Skip to main content

Spark plugs may be replaced by lasers

For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.
May 21, 2012 Read time: 3 mins
For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.

In the past, lasers strong enough to ignite an engine’s air-fuel mixtures were too large to fit in a vehicle’s engine compartment. At this year's Conference on Lasers and Electro Optics (CLEO: 2011) - %$Linker: External 0 0 0 oLinkExternal www.cleoconference.org Cleo Confernece false http://cleoconference.org/ false false%> - being held in Baltimore, USA from 1-6 May, researchers from Japan will describe the first multibeam laser system small enough to screw into an engine's cylinder head.

Equally significant, the new laser system is made from ceramics, and could be produced inexpensively in large volumes, according to one of the presentation's authors, Takunori Taira of Japan's National Institutes of Natural Sciences.

According to Taira, conventional spark plugs pose a barrier to improving fuel economy and reducing emissions of nitrogen oxides (NOx), a key component of smog. If engines ran leaner – burnt more air and less fuel – they would produce significantly smaller NOx emissions.

Spark plugs can ignite leaner fuel mixtures, but only by increasing spark energy. Unfortunately, these high voltages erode spark plug electrodes so fast, the solution is not economical. By contrast, lasers, which ignite the air-fuel mixture with concentrated optical energy, have no electrodes and are not affected.

Lasers also improve efficiency. Conventional spark plugs sit on top of the cylinder and only ignite the air-fuel mixture close to them. The relatively cold metal of nearby electrodes and cylinder walls absorbs heat from the explosion, quenching the flame front just as it starts to expand.

Lasers, Taira explains, can focus their beams directly into the centre of the mixture. Without quenching, the flame front expands more symmetrically and up to three times faster than those produced by spark plugs.

Equally important, he says, lasers inject their energy within nanoseconds, compared with milliseconds for spark plugs. “Timing – quick combustion – is very important. The more precise the timing, the more efficient the combustion and the better the fuel economy,” he says.

Lasers promise less pollution and greater fuel efficiency, but making small, powerful lasers has, until now, proven hard. Taira’s team built its laser from two yttrium-aluminum-gallium (YAG) segments, one doped with neodymium, the other with chromium. They bonded the two sections together to form a powerful laser only 9 millimeters in diameter and 11 millimeters long (a bit less than half an inch).

The composite generates two laser beams that can ignite fuel in two separate locations at the same time. This would produce a flame wall that grows faster and more uniformly than one lit by a single laser.
The laser is not strong enough to light the leanest fuel mixtures with a single pulse. By using several 800-picosecond-long pulses, however, they can inject enough energy to ignite the mixture completely.

A commercial automotive engine will require 60 Hz (or pulse trains per second), Taira says. He has already tested the new dual-beam laser at 100 Hz. The team is also at work on a three-beam laser that will enable even faster and more uniform combustion.

The laser-ignition system, although highly promising, is not yet being installed into actual automobiles made in a factory. Taira’s team is, however, working with a large spark-plug company and with 4306 Denso Corporation, a member of the 1686 Toyota Group. This work is supported by the Japan Science and Technical Agency (JST).

For more information on companies in this article

Related Content

  • Thailand trying to attract eco-friendly car manufacture
    April 17, 2012
    Thailand's Board of Investment is trying to woo car manufacturers to the country. From its position as the world's No. 1 producer of one-ton pickup trucks, it claims Thailand is quickly emerging as a global hub for fuel efficient, eco-friendly car manufacturing, with Euro-4 emission standards and a fuel economy of nearly 50 miles per gallon. Six of the world's top auto producers have based their fuel efficient car production in Thailand in recent years.
  • Next-generation fuel cells ready for low-emission electricity production
    November 25, 2015
    The VTT Technical Research Centre of Finland, under the INNO-SOFC project and in collaboration with Convion and Elcogen, is developing a new-generation, long-life fuel cell system offering efficiency higher than that of competing technologies. The project aims to develop new, energy-efficient and commercially viable applications.
  • US economic stimulus package highlights ITS technology
    July 17, 2012
    US Secretary of Transportation Ray LaHood talks to ITS International about economic stimulus funding and the absolute need to maintain and increase the use of technology in transportation. Of the total of $787 billion of funding announced under the American Recovery and Reinvestment Act (ARRA), the economic stimulus package which was signed into law by US President Barack Obama on 17 February 2009, $48.1 billion will go to the US Department of Transportation (USDOT). Of that, $27.5 billion is for highway in
  • FSB responds to RAC Foundation figures on 8 million local authority parking penalties issued in UK
    October 26, 2017
    The Federation of Small Businesses (FSB) has responded to a report from the RAC Foundation which showed that 8 million local authority parking penalties are issued annually across England and Wales. This figure is included in the Automated Road Traffic Enforcement: Regulation, Governance and Use - for the RAC Foundation report by Dr Adam Snow, a lecturer in criminology at Liverpool Hope University.