Skip to main content

Solid-state batteries– a better, longer-lasting class of Li-ion electrolytes?

In 2016, Li-ion batteries (LIB) have been on the market, virtually unchanged, for the last 25 years. While this anniversary marks and underscores their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV), the underlying technology begins to show its limitations in terms of safety, performance, form factor and cost, according to a new research report by IDTechEx Research.
November 8, 2016 Read time: 3 mins

In 2016, Li-ion batteries (LIB) have been on the market, virtually unchanged, for the last 25 years. While this anniversary marks and underscores their worldwide success and diffusion in consumer electronics and, more recently, electric vehicles (EV), the underlying technology begins to show its limitations in terms of safety, performance, form factor and cost, according to a new research report by 6582 IDTechEx Research.
 
The report, Solid-State and Polymer Batteries 2017-2027: Technology, Markets, Forecasts examines the solid-state electrolyte industry by giving a 10-year forecast through 2027 in terms of numbers of devices sold, capacity production and market size, predicted to reach over US$7 billion by 2027.
 
The first lithium-based solid-state battery was the lithium-iodine battery, where a sheet of lithium metal is placed in contact with solid iodine. These primary batteries were commercialised in the early 70’s to power pacemaker devices, but it wasn’t until a few years ago that sulphide-based materials, belonging to the thio-LISICON family, finally demonstrated that solid-state batteries can be made rechargeable and possibly outperform their liquid counterparts.
 
Recently ARPA-E programme director Paul Albertus announced the US-backed Ionics initiative, a three-pronged roadmap to support R&D on solid-state batteries. With a total investment of US$37 million, Ionics is poised to become the foundry of US-labelled next generation batteries, because solid-state batteries can enable smaller, safer, and better energy storage devices. This can be achieved by leveraging on the remarkable properties of the solid materials that have been developed over the last years, like garnets, thio-LISICONs, and perovskites.
 
Companies like Ford Motor, Toyota, Samsung, and Toshiba are already actively working on solid electrolytes, while many hail the technological achievements of French company Bolloré as an initial step on rechargeable lithium metal polymer batteries. At the same time, consumers demand better, long-lasting batteries that will not catch fire in their hands like the Samsung Galaxy Note 7, and solid-state electrolytes have the potential to solve those issues.
 
These and other factors, including the surge in popularity of electric cars, wearable devices and drones, are pushing the battery industry towards solid-state electrolytes. Solid-state batteries can be made thinner, flexible, and contain more energy per unit weight than conventional Li-ion.
 
The IDTechEx Research report covers both inorganic solid electrolytes and polymer electrolytes, with an analysis of where these two chemistries will most likely find applications. An analysis on thio-LISICONs and the other 7 solid electrolyte chemistries (garnet, halides, perovskites, argyrodites, LiPON, hydrides, NASICON-like) and polymer electrolytes is given. Additionally, comparisons are made between liquid-based Li-ion batteries and solid-based batteries, as well as between thin film and bulk solid-state batteries.

Related Content

  • June 16, 2016
    Electric vehicles accounted for largest share of hybrid and EV battery market in 2015
    According to research by P&S Market Research, the global hybrid and electric vehicle battery market is expected to grow at a CAGR of 20 per cent in terms of value during 2016-2022. The report, Global Hybrid and Electric Vehicle Battery Market Size, Share, Development, Growth and Demand Forecast, claims that, among the various applications, the electric vehicle segment accounted for the largest share (46.5 per cent) of the hybrid and electric vehicle battery market in terms of value in 2015. Electric vehi
  • December 18, 2015
    Profitable niches in the electric vehicles market
    Vehicles are electrifying at a breakneck speed and they are being completely reinvented with developments in many components and systems, according to a report by IDTechEx Research. Disruptive change and significant technological innovation is now being seen across all forms of electric vehicles for land, water and air. The fruits of all this are spectacular – from the vehicles themselves to over US$500 billion market opportunity that will be created by 2026. IDTechEx Research analyses and forecasts eve
  • June 13, 2014
    Lighting Research Center – ‘not all lighting systems perform equally well’
    The rapid development of lighting technologies, particularly solid-state systems using light emitting diodes (LEDs), has opened a universe of new possibilities as well as new questions about roadway lighting in the US, which for decades has been dominated by the use of high pressure sodium (HPS) lamps. Other light source technologies have also been angling for roadway market share. In response to a need for objective technical information about new types of roadway lighting among transportation agencies
  • August 10, 2012
    Boston-Power to supply battery systems to Beijing Electric Vehicle company
    Boston-Power, a provider of next-generation lithium-ion battery cells, modules and systems, has announced a multi-year agreement to provide battery systems to Beijing Electric Vehicle Company (BJEV), the electric vehicle delivery arm of Beijing Automotive Industry Company (BAIC). Under terms of the agreement, Boston-Power’s battery systems are expected to support multiple BJEV models and brands. Availability of pre-ordered vehicles begins in fourth calendar quarter 2012 with the C70 sedan, which is based on