Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • Opening the closed-loop to realise ITS benefits
    April 8, 2014
    Jim Leslie, manager of ITS applications engineering at the Econolite Group looks at practical steps in transitioning from closed-loop masters to a centralised ATMS. Not many years ago the standard method of coordinating signalised intersections in local areas was to install an on-street master – each of which monitored and controlled a limited number of signal controllers or intersections as a closed-loop system. And, to a certain extent, each closed-loop system was autonomous from others deployed by the ag
  • Israel aspires to ITS-led future
    May 29, 2013
    Shay Soffer, Chief Scientist with the Israel National Road Safety Authority, talks to Jason Barnes about his country’s current ITS outlook and how he sees this developing in the future. Israel ranks alongside countries such as the US and France in the road safety stakes, with an average 7.1 deaths per billion kilometres driven. But at that point the similarities end, as the country’s overriding issue is pedestrian safety. This is driven by several factors, including being a relatively small country where pe
  • What actually happens if we do #FreetheMIBs?
    May 1, 2020
    Q-Free’s #FREEtheMIBs campaign highlights the use of manufacturer-specific data output, storage and communication protocols in traffic lights and ITS systems.
  • Is it time for a harmonised international standard for Weigh in Motion?
    May 15, 2024
    Weigh in Motion vendors are frustrated that OIML accreditation is not proving to be enough to satisfy tenders in some countries. In this article, the board of the International Society for Weigh in Motion suggests a possible way forward…