Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • Managed motorways, hard shoulder running aids safety, saves time
    January 30, 2012
    The announcement that, in 2012/13, work to extend Managed Motorways to Junctions 5-8 of the M6 near Birmingham in the West Midlands is scheduled to start marks the next step for the UK's hard shoulder running concept, first introduced on the M42 in 2006. The M6 scheme is in fact one of several announced; over the next few years work will start on applying Managed Motorways to various sections of the M1, M25 London Orbital, M60 and M62. According to Paul Unwin, senior project manager with the Highways Agency
  • Mexico improves road safety with speed enforcement programme
    June 7, 2012
    A programme of road safety education and enforcement in the State of Jalisco in Mexico has reduced speed related fatalities by 40% in nine months Speed enforcement equipment will appear in greater number and visibility around the city of Guadalajara over coming months, as the Mexican State of Jalisco expands its road safety campaign. This comes hot on the heels of an initial programme of traffic speed education and enforcement in Guadalajara, which has yielded remarkable results, reducing speed related fata
  • Venkat Sumantran: ‘Smart cities are more hype than reality’
    November 23, 2018
    For all the talk of smart cities, investment in systems lags significantly behind organic expansion in most places. Andrew Stone talks to Venkat Sumantran, who has been looking at how to create a coherent framework which could help authorities answer multiple mobility questions Two megatrends are posing unprecedented challenges to those trying to keep people moving around the world’s urban areas now - and in the years and decades to come. The first is rapid urbanisation. One in six of us lived in urban a
  • Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles
    July 28, 2016
    Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate