Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • IEEE survey reveals driverless cars are the future
    July 15, 2014
    IEEE has released the findings of a survey that revealed expert opinions about the future of driverless cars, from challenges to mass adoption, essential autonomous technologies, features in the car of the future, and geographic adoption. More than 200 researchers, academicians, practitioners, university students, society members and government agencies in the field of autonomous vehicles, participated in the survey. When survey respondents were asked to assign a ranking to six possible roadblocks to th
  • DriveWyze wireless Preclear system speeds weighstation waiting
    March 1, 2013
    Drivewyze aims to revolutionise the way weighstation bypass systems work with its Pre-Clear system. And it’s not just looking at weighstations, either… Pete Goldin reports. Truck drivers know the drill: pull off the high­way at every weighstation and wait. Carriers know the drill, too: every minute spent waiting there translates directly into dollars lost. Traditionally, the only alternative to this scenario is a transponder-based system, which allows trucks to bypass the sites using technology similar to
  • Stop thinking and act on cooperative infrastructures
    February 2, 2012
    OmniAir's Tim McGuckin looks at why metropolitan transportation networks might be the key to securing the long-term funding of cooperative infrastructure
  • What Citizen Kane can teach transportation engineers
    July 14, 2023
    Andy Boenau suggests that one of the most famous movies of all time might have lessons for our industry. And they’re all about not knowing things...