Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • Truck platooning trials take to the highways
    July 24, 2017
    There is rising enthusiasm in America and beyond for the concept of truck platooning with trials being planned in several US states, as David Crawford reports. Growing numbers of US states are considering or implementing plans for trials of electronically-linked truck platooning on public road networks. This is in response to the interest being shown by the US$70bn a year road freight industry, where fuel represents 41% of the operating costs making the prospect of improving fuel economy by trucks travellin
  • UK university unveils technology to solve 200-year old railway problem
    September 10, 2015
    A failsafe track switch designed to eradicate a 200-year-old problem on the railway has been created by engineers at Loughborough University in the UK. The technology, known as Repoint, is a robust and reliable points mechanism which will improve safety, reduce maintenance costs and boost capacity on the railways.
  • 3M reflect on why CAVs need lines and signs
    May 10, 2017
    Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles. The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.
  • TSB funding for intelligent transport solution project
    May 27, 2014
    University Campus Milton Keynes is working with Clearview Traffic Group on a 13-month research that could lead to the development of innovative traffic management systems. UCMK, part of the University of Bedfordshire, will receive $195,000 of funding from the UK’s innovation agency, the Technology Strategy Board, to carry out the research. The project will see UCMK and the University’s Department of Computer Science and Technology partner with Clearview Traffic Group to explore the feasibility of extendi