Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • Technology and finance shapes up to make MaaS happen
    June 7, 2017
    The technology and finance aspects needed for Mobility as a Service (MaaS) to become widely adopted are taking shape as Geoff Hadwick and Colin Sowman hear. Sampo Hietanen, CEO of MaaS Global and ‘father’ of MaaS, started his address to ITS International’s recent MaaS Market conference in London by saying: “All of the problems that can be solved by a company or group of companies have already been solved, and now we are left with the big ones such as housing, transport and health. He called MaaS the “Netfli
  • Traffic lights: There’s a better way ..
    July 9, 2014
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic
  • New services and equipment helps cities tackle air quality issues
    September 19, 2017
    With poor urban air quality shortening lives and fines being imposed for breaching pollution limits, authorities are seeking ways to clean up their cities. Poor air quality is topping the agenda for city authorities across the globe. In the UK, for example, a report from the Royal Colleges of Physicians and of Paediatrics and Child Health, concluded that poor outdoor air quality shortens the lives of around 40,000 people a year – principally by undermining the health of people with heart and/or lung prob
  • ITS needs continuity at the policy-making level
    February 1, 2012
    ITS needs to be sold to politicians in plainer terms and we need to be encouraging greater continuity at the policy-making level says Josef Czako, chairman of the IRF's Policy Committee on ITS. At the ITS World Congress in New York in 2008, the International Road Federation (IRF) held the inaugural meeting of its Policy Committee on ITS. The Policy Committee's formation, says its chairman, Kapsch's Josef Czako, reflects an ongoing concern over the lack of deployment of ITS technology on roads in anything li