Skip to main content

Smart snowplough research

Researchers at the University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.
February 2, 2012 Read time: 2 mins
The sensor system that measures friction is attached to a wheel near the front axle of the plough
Researchers at the 584 University of Minnesota are working on a method that helps snowploughs determine exactly where slippery patches are and to target those specific areas with their sand-and-salt mixtures.

Based on measuring friction coefficients, a sensor system is attached to a wheel near the front axle of the snowplough, and when the sensor filters out vibration ‘noise’ and detects a loss of friction, it sends a signal to the sand-spreading equipment. A quarter of a second later, about the time it takes the applicator to arrive at the ice, the sand starts to be applied.

This automated system yields several benefits, according to researcher Rajesh Rajamani, a professor in the university’s Department of Mechanical Engineering who helped develop the technology along with colleagues Lee Alexander and Gurkan Erdogan.

For one, it will be helpful to know portions of road that tend to get slippery, and by using GPS technology, the 2103 Minnesota Department of Transportation (MnDOT), which is funding the research, could create a database of problem areas.

This smarter snowplough also stands to save a lot of sand and salt. Estimates suggest that Minnesota uses more than 200lb of sand and salt per person each winter, according to Alexander. “It’s just as important to know when to turn the sand off,” he says.

For more information on companies in this article

Related Content

  • Airborne traffic monitoring - the future?
    March 1, 2013
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k
  • Flexible, cost efficient bus trailers adapt to passenger demand
    January 25, 2012
    The cost, environmental and other benefits of the bus trailer concept are obvious. Used in several areas of Germany, as well as Austria, Switzerland, and Luxembourg, vehicle sizes can be adapted to passenger demand. The Ruebenacker group, a public transport provider in the Black Forest region of Germany, is one of more than 20 bus operators in the country that have deployed bus trailers, also referred to as bus trains. The company owns 81 buses and transports nearly six million passengers a year in the Blac
  • Cohda: CPM helps AVs see through blind spots 
    February 3, 2021
    Collective perceptive messaging allowed RSU to share information by using V2X tech 
  • US small business research program to develop pedestrian traffic signal app
    October 26, 2015
    With the growing numbers of pedestrian fatalities in mind, the Federal Highway Administration, through the US Department of ‘Transportation’s Small Business Innovation Research (SBIR) program, awarded a contract to Savari to develop SmartCross, a traffic signal interface app for smartphones. The SmartCross application interfaces with traffic signal systems that control the traffic lights and receives information about the pedestrian signal. Sending signals between the pedestrian’s phone and the nearest t