Skip to main content

Smart Cities technology aims to identify dangerous infrastructure-related driving areas

Scope Technologies and specialist technology Riga Technical University (RTU), Latvia, have partnered to develop Smart Cities technology which they say will help municipalities and major cities identify dangerous infrastructure-related driving areas. The technology collects billions of data sets per day through a range of telemetry, including comprehensive geographical and road infrastructure data in conjunction with traffic, weather and road accident data. By behavioural elements in the way people drive, tr
May 16, 2017 Read time: 2 mins
Scope Technologies and specialist technology Riga Technical University (RTU), Latvia, have partnered to develop Smart Cities technology which they say will help municipalities and major cities identify dangerous infrastructure-related driving areas.

 
The technology collects billions of data sets per day through a range of telemetry, including comprehensive geographical and road infrastructure data in conjunction with traffic, weather and road accident data.
 
By behavioural elements in the way people drive, traffic congestion and infrastructure like traffic lights, and looking at the combination between ambience, infrastructure and driver behaviour patterns, it enables scoring to categorise high risk motor areas, such as junctions,  in any given city.
 
The developers say the technology can capture and translate this data for multiple cities across the world, especially those across Europe, US, Asia and Latin America and is applicable to not only those with high accident rates but municipalities with a need to improve driving infrastructure.
 
Smart Cities is the first of two products being developed as part of the partnership between Scope Technologies and RTU. The two new partners have combined Scope’s telematics and big data mining capability and geographical data with RTU’s world-leading technology research and modelling analysis to develop products that will drastically improve driver safety.

Related Content

  • January 24, 2012
    In-vehicle automation of safety compliance and other traffic violations
    David Crawford explores new initiatives in enforcement. Achieving the EU’s new road safety target of reducing road traffic deaths by 50 per cent by 2020 depends on removing legal and institutional barriers to the deployment of new enforcement technologies, stresses Jan Malenstein. The senior ITS Adviser to Dutch National Police Agency the KLPD, and a European-level spokesperson on road and traffic safety, points to the importance of, among other requirements, an effective EUwide type approval process for fr
  • November 7, 2013
    Smart Spanish city trials cell-based traffic management
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.
  • February 3, 2012
    Lack of communication jeopardises road weather information
    A lack of communications means that the case for more widespread use of road weather information systems is still not happening, says Vaisala's Jon Tarleton. More effective exchanges up and down the political scale are needed, he adds
  • July 30, 2012
    Telematics standards need to evolve to keep up with technology
    Scott Andrews and Scott McCormick take a look at how standards development for the telematics environment needs itself to evolve in order to stay abreast of technological advances. While the road has been somewhat arduous, telematics has evolved from a research activity to a resource for fleet operators, consumers and road management authorities.