Skip to main content

Shell consortium plans bulk hydrogen production project

A consortium of Shell Deutschland Oil and Shell Energy Europe with partners ITM Power, SINTEF, thinkstep and Element Energy plans a project to install a large scale electrolyser to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex. With a capacity of ten megawatts, this would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyser.
September 4, 2017 Read time: 2 mins

A consortium of Shell Deutschland Oil and Shell Energy Europe with partners ITM Power, SINTEF, thinkstep and Element Energy plans a project to install a large scale electrolyser to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex.

With a capacity of ten megawatts, this would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyser. This electrolyser technology is also suitable to improve the stability of the electricity grid with a growing share of intermittent renewable energy sources, such as from solar and wind.

The consortium has been invited to the preparation of a grant agreement by the European Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU), following a competitive call for proposals.

Today, the refinery uses approximately 180,000 tons of hydrogen per year in its various plants. The hydrogen is currently produced as a by-product of the refining process or through natural gas reforming, while electrolysis uses electricity to split water into the base components of hydrogen and oxygen.

The project aims to enable the construction and operation of a large scale10 MW electrolyser that can produce high quality hydrogen and CO2 free hydrogen while demonstrating technology and cost improvements through up-scaling and new business applications. Electrolysis using low-cost renewable electricity could be a key technology for a potential CO2 free hydrogen production in the Shell Rheinland Refinery.

Related Content

  • October 18, 2016
    The Dutch revolution in smart EV charging
    By turning itself into one huge Living Lab for Smart Charging of electric vehicles, the Netherlands aims to become the international frontrunner for smart charging EVs, using them to store peak solar and wind power production. Already 325 municipalities, including Amsterdam, Rotterdam, Utrecht and The Hague, have joined the Dutch Living Lab Smart Charging project, representing 80 per cent of all public charging stations. It is also supported by the Dutch government and has been joined by some The New Motion
  • April 11, 2012
    China BAK receives government subsidy for its battery module project
    China BAK Battery, a manufacturer of lithium-based battery cells, has announced that the company has received a US$1.9 million subsidy for its battery module project from the National Development and Reform Commission (NDRC) and Ministry of Industry and Information Technology (MIIT). Comprised of cylindrical cells that can be used in electric vehicles (EVs), electric motors, electric bicycles (e-bikes) and power storage, the government funds will be used to further develop the battery module's efficiency an
  • September 15, 2016
    Deadlines approach for Europe’s automatic crash alert system
    The EU-co-funded I_ HeERO (Infrastructure_ Harmonised eCall European Pilot) project is working to ensure the readiness of national networks of call centres - known as public safety answering posts (PSAPs) - to deal with automated crash alerts arriving via the continent-wide 112 emergency phone number. Following on from its HeERO and HeERO2 pre-deployment predecessors, which enjoyed €16m (US$17.76m) in EU funding, the new initiative runs from 1 January 2015 to 31 December 2017. It has €30.9 million (US$34.
  • August 10, 2016
    Calculating the cost of stellar solutions
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,