Skip to main content

Shell consortium plans bulk hydrogen production project

A consortium of Shell Deutschland Oil and Shell Energy Europe with partners ITM Power, SINTEF, thinkstep and Element Energy plans a project to install a large scale electrolyser to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex. With a capacity of ten megawatts, this would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyser.
September 4, 2017 Read time: 2 mins

A consortium of Shell Deutschland Oil and Shell Energy Europe with partners ITM Power, SINTEF, thinkstep and Element Energy plans a project to install a large scale electrolyser to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex.

With a capacity of ten megawatts, this would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyser. This electrolyser technology is also suitable to improve the stability of the electricity grid with a growing share of intermittent renewable energy sources, such as from solar and wind.

The consortium has been invited to the preparation of a grant agreement by the European Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU), following a competitive call for proposals.

Today, the refinery uses approximately 180,000 tons of hydrogen per year in its various plants. The hydrogen is currently produced as a by-product of the refining process or through natural gas reforming, while electrolysis uses electricity to split water into the base components of hydrogen and oxygen.

The project aims to enable the construction and operation of a large scale10 MW electrolyser that can produce high quality hydrogen and CO2 free hydrogen while demonstrating technology and cost improvements through up-scaling and new business applications. Electrolysis using low-cost renewable electricity could be a key technology for a potential CO2 free hydrogen production in the Shell Rheinland Refinery.

Related Content

  • December 18, 2012
    New large-scale initiative towards Europe smart cities
    The Smart Cities Stakeholder Platform, part of the Smart Cities and Community Partnership, which was launched by the European Commission in early 2012, works as an advisory body for the EU’s leading research initiative on the future of cities. Members include technology producers, energy providers and urban visionaries. The open-invitation group is already 1,000 members strong, and is currently building a database of high-tech solutions to help build the smart cities of tomorrow. The ideas, coming from the
  • March 17, 2016
    Inland waterways can de-stress city roads
    David Crawford looks at an under-utilised solution for city-centre deliveries. The use of rivers and canals for moving freight is a well-established mode in North Western Europe, where it can take advantage of an intensively developed network. In the Netherlands, 40% of the total volume of goods transported internally goes by water; the figure for Flanders (the neighbouring Dutch-speaking region of Belgium) is 11.5%.
  • March 17, 2017
    Better websites build smarter transport participation
    Transport initiatives are gaining traction through well-designed websites. Four European smart transport-oriented websites have gained honours in the 2016 .eu Web Awards, an online competition inaugurated in 2014 to recognise the most impressive sites within the .eu internet domain in terms of their design and content. The four were among 15 finalists across all five categories of the scheme, giving the transport sector a high profile for its proactive use of sites as communications tools for driving major
  • June 1, 2016
    Engine emissions analyser improves emissions testing capability
    An advanced FTIR analyser installed at Intertek’s engine test facility in Milton Keynes is enabling engineers to improve the quality of their tests on the gaseous components of engine exhaust emissions. The gas analyser manufactured by Gasmet Technologies and installed by their UK subsidiary, Quantitech, measures multiple organic and inorganic components simultaneously from a large library of compounds, enabling Intertek’s engineers to quickly and easily change the measured compounds; to change the fuel