Skip to main content

SENSKIN project develops first prototype of infrastructure monitoring sensor

SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structur
February 3, 2017 Read time: 2 mins
SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structural and rehabilitation modules.

A main objective of the project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains. Emerging delay tolerant network technology is applied, so that the measurements of the sensors can be transmitted to the control centre even under difficult conditions, such as an earthquake, where some communication networks are inoperable.

The sensors show a linear output in a range of strains between zero to 20 per cent, while they can monitor both strains and crack openings, replacing both strain gauges and crack metres.  In addition, the sensor requires little power to operate, is capable of being installed on an irregular surface, is less expensive than existing sensors and allows simple signal processing - including the ability to self-monitor and self-report.

Structural assessment is based on detailed finite element analyses of the monitored bridge that have been developed, while the selection of rehabilitation methods takes into account economic and environmental considerations.

The system will be field evaluated on the Bosporus 1 bridge in Istanbul with an average daily traffic of 200,000 vehicles and a bridge on the Greek Egnatia motorway that connects Europe to Asia.

Related Content

  • Intertraffic Amsterdam date for Kistler bridge monitoring portfolio
    February 29, 2024
    Kistler is also bringing its new KiTraffic Digital Platform WiM system to Amsterdam in April
  • The cost benefits of LED traffic signals
    July 16, 2012
    On 11 January 2005, the Kentucky Transportation Cabinet (KYTC) began installing GELcore LED traffic signal modules state-wide through an Energy Savings Performance Contract. In tendering for the work, the energy service contractors could choose any manufacturers equipment but all of them proposed to use the GELcore brand.
  • Mexico’s Durango-Mazatlan highway sets tunnel safety standard
    September 14, 2016
    Mauro Nogarin looks at the management of the longer tunnels on Mexico’s Durango-Mazatlan highway. In recent years the National Infrastructure Fund of Mexico has increased investment in the installation of ITS systems on selected highways to increase road safety. One such major investment is the 230km long Durango-Mazatlan highway which is 12m in width and has an average speed of 110km/h.
  • Driver aids make inroads on improving safety
    November 12, 2015
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.