Skip to main content

SENSKIN project develops first prototype of infrastructure monitoring sensor

SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structur
February 3, 2017 Read time: 2 mins
SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structural and rehabilitation modules.

A main objective of the project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains. Emerging delay tolerant network technology is applied, so that the measurements of the sensors can be transmitted to the control centre even under difficult conditions, such as an earthquake, where some communication networks are inoperable.

The sensors show a linear output in a range of strains between zero to 20 per cent, while they can monitor both strains and crack openings, replacing both strain gauges and crack metres.  In addition, the sensor requires little power to operate, is capable of being installed on an irregular surface, is less expensive than existing sensors and allows simple signal processing - including the ability to self-monitor and self-report.

Structural assessment is based on detailed finite element analyses of the monitored bridge that have been developed, while the selection of rehabilitation methods takes into account economic and environmental considerations.

The system will be field evaluated on the Bosporus 1 bridge in Istanbul with an average daily traffic of 200,000 vehicles and a bridge on the Greek Egnatia motorway that connects Europe to Asia.

Related Content

  • February 3, 2012
    Healthy prospects for floating vehicle data systems
    Elmar Brockfeld, Alexander Sohr and Peter Wagner from the German Aerospace Center's Institute of Transport Systems look at the prospects for floating vehicle data systems. Although Floating Vehicle Data (FVD) or probe vehicle fleets have been around for about a decade, the idea behind them is of course much older: from probe vehicles that flow with the traffic it should be possible to get a precise, fast and spatially near-complete picture of the prevailing traffic flow conditions in an area under surveilla
  • August 27, 2024
    Asecap Days 2024: Getting used to the new normal
    Asecap Days 2024 in Milan focused on environmental protection of road infrastructure, digital twin-based maintenance and monitoring of highways as well as the impact of electric vehicles, reports David Arminas
  • November 26, 2012
    Trial results change perceptions of EVs
    The results of two one-year electric vehicle (EV) trials carried out in the Netherlands and Sweden were presented at the European Electric Vehicle Congress (EEVC) 2012. All aspects of EVs were taken into account during these trials; results show that after an EV is integrated in people’s daily use, most preconceptions are proved wrong.
  • March 15, 2016
    Rethink required to reduce road transport’s environmental impact
    Against a background of a renewed focus on limiting the rise in average temperatures, Colin Sowman looks at a project that is taking a holistic approach to the environmental impact and safety of road transport. At the COP21 meeting in Paris last December, almost 200 nations agreed to reduce greenhouse gas emissions in an effort to keep the rise in global temperatures to 2°C) compared with pre-industrial levels. The transportation sector is a major contributor to the production of CO2, one of the main green