Skip to main content

SENSKIN project develops first prototype of infrastructure monitoring sensor

SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structur
February 3, 2017 Read time: 2 mins
SENSKIN, a 42-month European Horizon 2020 project to develop a sensor for monitoring-based maintenance of the transport infrastructure implemented by 13 partners from seven countries has reported on its first 18 months of work. During this time, the partners derived user requirements and, based on these, designed the prototype of the skin-like sensors and the data acquisition unit. They also provided proof of concept of the communication system and are finishing the prototypes of the communication, structural and rehabilitation modules.

A main objective of the project is the development of a skin-like sensor that offers spatial sensing and can monitor large strains. Emerging delay tolerant network technology is applied, so that the measurements of the sensors can be transmitted to the control centre even under difficult conditions, such as an earthquake, where some communication networks are inoperable.

The sensors show a linear output in a range of strains between zero to 20 per cent, while they can monitor both strains and crack openings, replacing both strain gauges and crack metres.  In addition, the sensor requires little power to operate, is capable of being installed on an irregular surface, is less expensive than existing sensors and allows simple signal processing - including the ability to self-monitor and self-report.

Structural assessment is based on detailed finite element analyses of the monitored bridge that have been developed, while the selection of rehabilitation methods takes into account economic and environmental considerations.

The system will be field evaluated on the Bosporus 1 bridge in Istanbul with an average daily traffic of 200,000 vehicles and a bridge on the Greek Egnatia motorway that connects Europe to Asia.

Related Content

  • European ITS Congress emphasises ITS development and deployment
    February 6, 2012
    The 8th European ITS Congress is a key event for the industry. Hermann Meyer, CEO of Ertico-ITS Europe puts the event in context
  • Bigger role for data protection and privacy policies in transportation
    June 11, 2015
    Dr Caitlin Cottrill, lecturer at the University of Aberdeen’s School of Geosciences, examines the impact of privacy legislation on the transportation sector. Growing reliance on big data, underscored by the increasing ubiquity of smart infrastructure and the ‘Internet of Things’, has profoundly impacted the regulatory environment experienced by transportation professionals. This is particularly the case in relation to the privacy of personally identifying information (PII). There has been increased attenti
  • New Zealand seeks comprehensive CBA framework
    October 5, 2016
    New report highlights how assessing the financial benefit of deploying ITS is an involved and evolving calculation Following a global search, five key action areas have emerged from the New Zealand Transport Agency’s recent scoping of a more comprehensive cost–benefit analysis framework for evaluating planned ITS deployments. A report commissioned from engineering consultancy Aecom New Zealand sets out the groundwork for more closely-defined assessments that will convincingly support public-sector policy ma
  • Better traffic management with acoustics? Sounds good, says SequoIA Analytics
    January 19, 2024
    French start-up is using roadside fibre-optic cables to provide better traffic data