Skip to main content

Scottish company produces motor fuel from whisky

A Scottish company has become the first in the world to produce biofuel capable of powering cars from residues of the whisky industry. Edinburgh-based Celtic Renewables now plans to build a production facility in central Scotland after manufacturing the first samples of bio-butanol from the by-products of whisky fermentation. Celtic Renewables, in partnership with the Ghent-based BioBase Europe Pilot Plant (BBEPP), has produced the first samples of bio-butanol from waste using a process called the acetone-b
March 2, 2015 Read time: 3 mins
RSSA Scottish company has become the first in the world to produce biofuel capable of powering cars from residues of the whisky industry.

Edinburgh-based Celtic Renewables now plans to build a production facility in central Scotland after manufacturing the first samples of bio-butanol from the by-products of whisky fermentation.

Celtic Renewables, in partnership with the Ghent-based BioBase Europe Pilot Plant (BBEPP), has produced the first samples of bio-butanol from waste using a process called the acetone-butanol-ethanol (ABE) fermentation.

The ABE fermentation was first developed in the UK a century ago, but died out in competition with the petrochemical industry. However bio-butanol is now recognised as an advanced biofuel - a direct replacement for petrol - and the Scottish company is seeking to reintroduce the process to Europe for the first time since the 1960s, using the millions of tonnes of annual whisky production residues as their unique raw material.
The biofuel is produced from draff - the sugar rich kernels of barley which are soaked in water to facilitate the fermentation process necessary for whisky production – and pot ale, the copper-containing yeasty liquid that is left over following distillation.

The by-products were provided by Tullibardine, the Perthshire distillery that has worked in partnership with Celtic Renewables since 2012.

Celtic Renewables, a spin-out from the Biofuel Research Centre (BfRC) at 4156 Edinburgh Napier University, has spent the last year developing its process at industrial scale in Belgium as part of a US$1.5 million programme funded by the Department for Energy and Climate Change (DECC) under its Energy Entrepreneurs Fund.
It is now seeking funding from the 1837 Department for Transport’s (DfT’s) £25 million advanced biofuel demonstration competition and, if successful, hopes to build its first demonstration facility at the Grangemouth petrochemical plant by 2018.

Unveiling the first sample Professor Martin Tangney, the company’s founder and president, said: “Showing the world our first sample of biofuel produced from whisky by-products is a proud moment for everyone involved. We have successfully taken a defunct technology and adapted it to current market conditions, attracting the investment and partners required to scale-up to industrial production and prove that this works at scale. This historic sample could herald a new era in sustainable biofuel and the birth of a UK industry worth US$154 million a year.”

Professor Wim Soetaert, CEO of the Bio Base Europe Pilot Plant, said: “The Bio Base Europe Pilot Plant is designed to support innovative companies like Celtic Renewables to achieve such world leading breakthroughs, as Europe moves away from a fossil based to a biobased economy. This project is a true partnership and we are proud of the role we have played in making biobutanol from Scottish whisky residues. We are excited about the future with Celtic Renewables and we are committed to turn our collaboration into a major success.”

Winners of the DfT competition will receive funding of up to US$18.5 million over three years to build a biofuel facility that should be operational by December 2018 and producing at least one million litres of biofuel a year.

Related Content

  • September 4, 2017
    Shell consortium plans bulk hydrogen production project
    A consortium of Shell Deutschland Oil and Shell Energy Europe with partners ITM Power, SINTEF, thinkstep and Element Energy plans a project to install a large scale electrolyser to produce hydrogen at the Wesseling refinery site within the Rheinland Refinery Complex. With a capacity of ten megawatts, this would be the largest unit of its kind in Germany and the world’s largest PEM (Polymer Electrolyte Membrane) electrolyser.
  • October 23, 2023
    £150m boost for UK local bus services
    Money is part of reallocation of £36bn due to be spend on now-abandoned HS2
  • March 17, 2016
    ‘Free’ power for signs, shelters and so much more
    David Crawford looks at the sunny side of the street. Solar power has been relatively slow in entering the transport sector, but a current blossoming of activity bodes well for the large-scale harnessing of an alternative energy that is zero-emission at source and, in practical terms, infinitely renewable. Traffic management and traveller information systems, and actual vehicles, are all emerging as areas for deployment. Meanwhile roads themselves are being viewed as new-style, fossil fuel-free ‘power stati
  • July 17, 2012
    Methanol range extender for fuel cell vehicle
    The innovative QBeak electric car is to benefit from a sophisticated methanol fuel cell range extender that will give it a range of at least 800km. Development work is being carried out on the project by a consortium of Danish companies. The plan is to develop a novel, range-extended electric vehicle that uses biomethanol as a fuel source. TheModularEnergyCarrier concept (MECc) project has just been granted funding from the Danish government. The reworked electric car is expected to deliver high market pote