Skip to main content

Safer rail crossings with ESA satellites

Germany-headquartered Berner and Mattner is to carry out a feasibility study, SafeRail - Improving Safety at Railway Level Crossings, on behalf of the European Space Agency (ESA). The objective of the study, which is to be carried out within ESA’s Integrated Applications Promotion Program, is to determine the technical feasibility and economic viability of a space-based service using an integrated solution which employs different types of space assets in combination with already existing terrestrial techno
March 21, 2013 Read time: 2 mins
Germany-headquartered Berner and Mattner is to carry out a feasibility study, SafeRail - Improving Safety at Railway Level Crossings, on behalf of 6780 The European Space Agency (ESA).  

The objective of the study, which is to be carried out within ESA’s Integrated Applications Promotion Program, is to determine the technical feasibility and economic viability of a space-based service using an integrated solution which employs different types of space assets in combination with already existing terrestrial technologies.

Technical methods to be considered range from determining railroad vehicles’ position using relative measurements carried out by the railroad company and by satellite navigation to redundant terrestrial and satellite communication and integrated traffic information systems that provide the driver with suitable information.

The potential risk of railway level crossings as an intersection of two different traffic modes is very high. A quarter of all railroad fatalities are caused by accidents at railway level crossings. Due to the high variety of existing technical safety systems, efficient modernisation of the current systems is difficult.

Support agreements with several relevant European users and stakeholders have been established during preparation of the study. The results of the study will be presented to the user community during an awareness event.

For more information on companies in this article

Related Content

  • C/AVs could mean cheaper roads
    October 28, 2019
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur
  • Include ITS in policy decisions from the start, not as an afterthought
    February 1, 2012
    DG TREN's Fotis Karamitsos, on why the European Commission's new ITS Action Plan is looking to the past for future direction. The European Commission's (EC's) new Action Plan for the Deployment of Intelligent Transport Systems in Europe, which was announced as 2008 drew to a close, intends that transport and travel become 'cleaner; more efficient, including energy efficient; and safer and more secure'. At first sight, that wording might be interpreted as marking a significant policy shift within Europe, wit
  • Report analyses multiple ITS projects to highlight cost and benefits
    March 16, 2015
    Every year in America cost benefit analysis is carried out on dozens of ITS installations and pilot studies and the findings, along with the lessons learned, are entered into the Department of Transportation’s (USDOT’s) web-based ITS Knowledge Resources database. This database holds more than 1,600 reports and periodically the USDOT reviews the material on file to draw conclusions from this wider body of evidence. It has just published one such review ITS Benefits, Costs, and Lessons Learned: 2014 Update Re
  • Rail safety technology launched in Central Minnesota
    January 7, 2013
    New safety technology being installed along some rail lines across the US, including Central Minnesota, aims to prevent deadly train crashes caused by human error. The technology is designed to automatically stop or slow a train to prevent accidents such as a collision with another train or a derailment caused by excessive speed. The changes stem from federal legislation passed in 2008 after a commuter train collided head-on with a freight train in California, killing twenty-five people and injuring 135. An