Skip to main content

Ride-sharing could reduce congestion, says US study

A new Massachusetts Institute of Technology (MIT) study suggests that using carpooling options from companies like Uber and Lyft could reduce the number of vehicles on the road by a factor of three without significantly impacting travel time. Led by Professor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers developed an algorithm that found 3,000 four-passenger cars could serve 98 per cent of taxi demand in New York City, with an average wait-tim
January 6, 2017 Read time: 2 mins
A new 2024 Massachusetts Institute of Technology (MIT) study suggests that using carpooling options from companies like Uber and Lyft could reduce the number of vehicles on the road by a factor of three without significantly impacting travel time.

Led by Professor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), researchers developed an algorithm that found 3,000 four-passenger cars could serve 98 per cent of taxi demand in New York City, with an average wait-time of only 2.7 minutes.

The team also found that 95 per cent of demand would be covered by just 2,000 10-person vehicles, compared to the nearly 14,000 taxis that currently operate in New York City.

Using data from 3 million taxi rides, the new algorithm works in real-time to reroute cars based on incoming requests, and can also proactively send idle cars to areas with high demand, a step that speeds up service 20 percent, according to Rus.

“Instead of transporting people one at a time, drivers could transport two to four people at once, resulting in fewer trips, in less time, to make the same amount of money,” says Rus. “A system like this could allow drivers to work shorter shifts, while also creating less traffic, cleaner air, and shorter, less stressful commutes.”

Related Content

  • January 26, 2012
    Is GIS modelling the answer to the implications of age?
    Geoff Zeiss of Autodesk talks about the convergence going on between GIS and other software systems which will revolutionise the design and construction of nations' utilities. The issue is that we're getting old. But forget the discovery of body hair in places it never used to be, whether or not to dye, contact lenses versus glasses - in fact, put aside entirely the decision to age gracefully or outrageously; the personal implications pale next to the effects on wider society. Faced with the problem of how
  • August 20, 2019
    Cost Benefit: the economic case for cycling
    Cycling is good for us for any number of reasons. David Crawford finds that it is now possible to access basic, low-cost data which will help make the economic case for improving infrastructure Cycling is enjoying a favourable press the world over as a ‘good thing’ in the economic, environmental and social spheres. A recent study on the Value of Cycling from the UK’s University of Birmingham, for example, shows that cycle-friendly urban settings can deliver annualised transport infrastructural support co
  • May 9, 2019
    TRL: Cities must do more to help VRUs
    UK cities must learn from the Netherlands and Denmark if active travel and increased safety for vulnerable road users are to co-exist, says TRL’s Marcus Jones Active travel’ refers to modes of transport in which physical effort is required to undertake purposeful journeys - for example, walking or cycling to school, work or the local shops, as well as walking and standing as part of accessing public transport. The benefits of replacing short car journeys with more active forms of transport are obvious. Act
  • May 29, 2013
    City Safety reduces low speed accidents on Volvo’s XC60 and S60
    It was four years ago that Volvo introduced its City Safety collision avoidance system which is designed to reduce the number and severity of low-speed accidents to the US market. However, a study in America by the Highway Loss Data Institute (HLDI) has shown that the results may not be as good as initially indicated by an earlier report. According to Volvo, statistics show that 75% of reported collisions occur at speeds of up to 30km/h (18.6mph) typically in urban traffic and in slow-moving traffic queues