Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • April 17, 2023
    Reducing injuries and deaths in US workzones shouldn’t be this complicated
    In National Work Zone Awareness Week, surely the least we can do is to help get road workers home safely at the end of the day, says One.network's boss
  • October 22, 2024
    IRF World Congress 2024: moving ahead
    On the last day of the three-day IRF World Congress 2024 in Istanbul, attendees heard what can work best, what can be improved and what the future might hold for those pursuing sustainable goals. David Arminas reports.
  • December 20, 2016
    Electric vehicles in construction are the future, say researchers
    The industrial and commercial sector is the largest part of the electric vehicle value market and that will continue to be the case according to analysis in the IDTechEx report, Industrial and Commercial Electric Vehicles 2017-2027. Buses are the largest part of that and they are mainly made in China for China, where typical orders are ten times the size of orders elsewhere. Less dramatically, construction, mining and agriculture do not see 70 per cent grants for EV versions yet they are steadily becomin
  • May 11, 2012
    Free report asks: can land ‘value capture’ help fund transit projects?
    The Mineta Transportation Institute in the US has released its newest research report, Decision Support Framework for Using Value Capture to Fund Public Transit: Lessons from Project-Specific Analysis. The research investigates the viability of land "value capture" (VC) to help generate revenue for transit provision. Five VC mechanisms are evaluated in depth, including tax increment financing (TIF), special assessment districts (SADs), transit impact fees, joint developments, and air rights. The report incl