Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • March 27, 2020
    California e-dreaming with ABB
    Data can unlock the costs and benefits of converting commercial fleets to electric vehicles.
  • November 7, 2012
    Europe's electronic toll service closer to operational reality
    After much debate and delay, a unifying European Electronic Toll Service is now finally on the horizon, says ASFiNAG’s Klaus Schierhackl. Here, he talks with Jason Barnes about what that might mean. Aworkable European Electronic Toll Service (EETS) which will allow truck drivers to travel across the continent and pay tolls using a single account and OnBoard Unit (OBU) was originally timetabled to be in place and operating by October of this year. A lack of urgency from some of the stakeholders involved in t
  • June 18, 2014
    Q-free unveils new products
    Q-Free has added two new high performance products to its product portfolio, both with low power consumption and long life use. The OBU615 is a Dedicated Short-Range Communication-based (DSRC) on-board unit (OBU) for applications such as electronic toll collection (ETC) and congestion charging, automatic vehicle identification (AVI), electronic registration identification (ERI), access control and parking. The device uses the same in-vehicle mounting as he OBU610, reducing logistic and operational costs
  • March 3, 2020
    How safe are smart motorways?
    A valiant attempt to ease the UK’s congested strategic road system? Or an idea that should never have seen the light of day? Alan Dron reports on the controversy over smart motorways...