Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • August 4, 2015
    Survey: Majority of UK public remains worried about global warming
    A new survey of over 2,000 members of the public by the Institution of Mechanical Engineers and ICM Unlimited has found that 57 per cent of the public are worried about global warming, with 14 per cent saying they were ‘very worried’. The poll found that 64 per cent of people think global warming is already a problem now, while 70 per cent said they think global warming will be a problem in 20 years’ time. The main issues the respondents said they were worried about were flooding and sea level rises (63
  • August 30, 2017
    UK government to fund development of waste-based fuels for planes and trucks
    As part of plans to promote clean alternative fuels, the government is offering US$28 million (£22 million) in funding for projects in the UK to develop low carbon waste-based fuels for planes and lorries, with matching funding from industry. Trials of sustainable jet fuel, made from waste materials, have taken place in Europe and North America and now the launch of a UK competition intends that British experts will conduct pioneering research in this sector. The Department for Transport has already had int
  • March 15, 2016
    Rethink required to reduce road transport’s environmental impact
    Against a background of a renewed focus on limiting the rise in average temperatures, Colin Sowman looks at a project that is taking a holistic approach to the environmental impact and safety of road transport. At the COP21 meeting in Paris last December, almost 200 nations agreed to reduce greenhouse gas emissions in an effort to keep the rise in global temperatures to 2°C) compared with pre-industrial levels. The transportation sector is a major contributor to the production of CO2, one of the main green
  • April 19, 2012
    Volvo developing EV range extenders
    Volvo Car Corporation has announced it is taking the next step in the company's electrification strategy by producing test cars with range extenders - electric cars that are fitted with a combustion engine to increase their effective range. The projects, supported by the Swedish Energy Agency and the EU, encompass three potential technology combinations. Tests of the various concepts will get under way in the first quarter of 2012.