Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • April 29, 2021
    ITS America 2021: best of both worlds
    ITS America’s rearranged Annual Meeting will take place in Charlotte, North Carolina, in early December. It is going to be Covid-safe and full of great content – both in-person and online
  • December 4, 2015
    Emissions ‘rising too high despite the reduction targets’
    An analysis by the VTT Technical Research Centre of Finland of the emission targets from 159 countries indicates that, although nearly all the world’s countries have announced targets for reducing their greenhouse gas emissions, more ambitious emission reductions are needed in order to limit global warming to two degrees. In addition, developing countries have recently joined the effort to slow down climate change by setting targets for reducing emissions. However, despite those targets, VTT says emissi
  • April 9, 2025
    Celebrating 30 years of supporting the ITS industry
    What were you doing in 1995? Andrew Barriball was in Yokohama, along with some people from a nascent sector who wanted to make transportation cleaner and safer …
  • July 31, 2020
    Covid-19 cleared the air: ITS can keep it clean
    Covid-19 has created cleaner air: ITS can help keep it that way – but it’s not going to be straightforward, as Graham Anderson discovers