Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • October 29, 2015
    Counting the environmental costs of ITS deployment
    David Crawford looks at the latest thinking about calculating the benefits associated with the environmental side of ITS schemes. The penny is dropping that some environmental costs “are being shifted outside the traditional bounds of evaluation methods” for ITS-based road transport projects, according to researchers at the UK University of Leeds’ Institute for Transport Studies.
  • December 1, 2015
    VW scandal prompts emissions testing debate
    In the wake of the VW scandal John Kendall looks at emissions testing on both sides of the Atlantic. Since the VW emissions story broke in September, emissions testing has come under greater scrutiny, and none more so than in Europe, where critics have long been highlighting the weaknesses of the testing system. Ironically, changes to the emissions testing process were already under review but the story has pushed it up the agenda.
  • March 22, 2012
    Volvo warns EU on its approach to electric vehicles and its transport white paper
    Volvo Car Corporation warns that EU targets for cutting carbon dioxide emissions are being jeopardised by the absence of harmonised incentives to consumers. Another key issue is the urge for continuous support to automotive research and development, including electromobility. Stefan Jacoby, president and CEO of Volvo Car Corporation, told an industry seminar in Brussels yesterday that jobs, investment and competitiveness in the European car industry could be threatened by the European Commission's approach
  • March 26, 2020
    University study debunks EV emissions ‘myth’
    Fears that electric vehicles (EVs) could actually increase carbon emissions are 'a myth', according to new research.