Skip to main content

Researchers accidentally discover how to convert pollution into fuel

In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which
October 20, 2016 Read time: 3 mins
In a new twist to waste-to-fuel technology, scientists at the US Department of Energy’s Oak Ridge National Laboratory (ORNL) have accidentally developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol.

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 per cent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts.

“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the study. “We were trying to study the first step of a proposed reaction when we realised that the catalyst was doing the entire reaction on its own.”

“We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise -- it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts.

“By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion.

“They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said.

Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar.

“A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”

The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behaviour.

Related Content

  • Monali Shah: "The way we move and the air we breathe is all connected"
    September 5, 2023
    Be yourself: Monali Shah of Google and ITS America tells Adam Hill how showing her personality in business has enabled her to make deeper connections on a ‘non-traditional’ journey into transportation
  • Men are more stressed than women when stuck in traffic
    April 23, 2012
    According to new research from TomTom, men's stress levels soar a staggering seven times higher than a woman's when stuck in heavy traffic. Psychologists tested volunteers for the rise in stress chemicals - Immunoglobulin A (IgA - an immune system marker) and alpha-amylase (a stress marker) - in their saliva when caught up in a traffic jam. The levels for women in the study increased by 8.7 per cent while stuck behind the wheel - but for men it shot up by a worrying 60 per cent in the same gridlock scenario
  • Autonomous truck platooning moves up a gear with NXP and DAF Trucks
    November 25, 2016
    NXP Semiconductors is setting the pace in truck platooning with full-size commercial vehicles that can run at 80kmph only 11 metres apart, offering up to 11 per cent in fuel savings. The Dutch technology company believes that “there’s no better place than truck platooning to demonstrate the merits of autonomous driving.” Its research team has been working with DAF Trucks to develop leading edge technology that can make driving decisions ‘30 times faster than human reaction time’. NXP says that adapt
  • New report on rising global vehicle production
    September 12, 2012
    New research conducted by the Worldwatch Institute for its Vital Signs Online service indicates that production of passenger vehicles (cars and light trucks) rose from 74.4 million in 2010 to 76.8 million in 2011, and 2012 may bring an all-time high of 80 million or more vehicles. Global sales of passenger vehicles increased from 75.4 million to 78.6 million over the same period, with a projected 81.8 million in 2012. The major driver of increased production and sales are the so-called emerging economies, e