Skip to main content

Research project simulates electric vehicles

A fleet of 130 virtual electric cars is set to appear on the roads of Munich, Germany, where the Technische Universität München (TUM) is to provide participating companies with smartphones that will be installed in taxis and commercial vehicles to track their movements. The phones will record the exact location of the vehicle via GPS, along with driving behaviour such as acceleration, deceleration and turns. The phone’s software will then calculate the energy consumption for a freely configured electric
November 29, 2013 Read time: 2 mins
A fleet of 130 virtual electric cars is set to appear on the roads of Munich, Germany, where the Technische Universität München (TUM) is to provide participating companies with smartphones that will be installed in taxis and commercial vehicles to track their movements.

The phones will record the exact location of the vehicle via GPS, along with driving behaviour such as acceleration, deceleration and turns. The phone’s software will then calculate the energy consumption for a freely configured electric vehicle and show the charge status of a virtual battery.

In parallel with the simulation phase, the data calculated will be validated using a real electric car. “This will show various taxi and commercial operators that partial electrification of their fleet would not only be technically feasible, but would offer economic and environmental benefits,” maintains engineer Benedikt Jäger from TUM’s Institute of Automotive Technology.

For the researchers, the biggest challenge lies in establishing the measures needed for electric vehicles to handle the considerable distances driven by taxis and commercial vehicles. Electric vehicles have different ranges, so one of the important findings from the project will be the location of additional charging stations that would need to be installed on taxi and commercial routes.

Related Content

  • Need for performance standards for road user charging systems
    February 2, 2012
    GNSS-based road use metering systems need performance metrics, as well as ways to test and reliably compare them. Bern Grush and Joaquín Cosmen write about the function of the GNSS Metering Association for Road-use charging (GMAR), recently set up to address this issue
  • EU research develops method for evaluating critical infrastructure
    January 10, 2013
    The European Commission’s SeRoN research project has drawn to a close, having developed a sophisticated method of identifying and quantifying threats to critical infrastructure. In December 2008 the European Commission published the directive 2008/114/EC on the identification, designation and assessment of the need to improve ‘European critical infrastructure’. In line with the objectives formulated in this directive, the SeRoN (Security of Road Transport Networks) research project was established in Novemb
  • Road user charging comes a step closer in Oregon
    December 19, 2017
    Having been the first US state to introduce the gas tax a century ago, Oregon is now blazing the road user charging trail. Colin Sowman looks at progress to date. For more than a decade, authorities in Oregon have known of the impending decline in fuels tax income and while revenue increased by more than 5% in 2016, that growth will slow considerably this year and income is projected to start declining in 2020.
  • Transit takes on demanding role
    April 2, 2021
    Community transport - or paratransit - has historically formed the basis of demand-responsive operations. But with new routing technologies, David Crawford sees wider potential