Skip to main content

Rail safety technology launched in Central Minnesota

New safety technology being installed along some rail lines across the US, including Central Minnesota, aims to prevent deadly train crashes caused by human error. The technology is designed to automatically stop or slow a train to prevent accidents such as a collision with another train or a derailment caused by excessive speed. The changes stem from federal legislation passed in 2008 after a commuter train collided head-on with a freight train in California, killing twenty-five people and injuring 135. An
January 7, 2013 Read time: 3 mins
New safety technology being installed along some rail lines across the US, including Central Minnesota, aims to prevent deadly train crashes caused by human error. The technology is designed to automatically stop or slow a train to prevent accidents such as a collision with another train or a derailment caused by excessive speed.

The changes stem from federal legislation passed in 2008 after a commuter train collided head-on with a freight train in California, killing twenty-five people and injuring 135. An investigation found the train driver was sending and receiving text messages shortly before the crash.

As a result, congress passed the Rail Safety Improvement Act, requiring positive train control technology to be implemented on all class I passenger lines and freight trains carrying certain hazardous materials by 2015.

Work has already begun to upgrade signals along Burlington Northern Santa Fe’s (BNSF) lines in Minnesota and will continue this year, according to Amy McBeth, a spokeswoman for the railway. BNSF has spent about US$300 million on positive train control upgrades on its entire rail system this year, she said.  “We are on track to meet that required deadline,” McBeth said, continuing “The travelling public probably won’t notice any difference after the technology is installed”.

2008 Amtrak also will install positive train control aboard its trains that run along BNSF rail lines, says Amtrak spokesman Marc Magliari.

6907 Metro Transit, which operates the Northstar commuter rail line between Big Lake and Minneapolis, expects to have its six locomotives and six cab cars outfitted with the equipment in 2014 after the wayside equipment is tested, spokesman John Siqveland said.

Positive train control uses GPS technology to determine a train’s location and speed. It warns train operators of potential problems, then overrides the driver and stops the train if the operator does not respond within a certain amount of time.

The system requires equipment installed along rail lines as well as aboard locomotives. It’s a complex endeavor expected to cost railroads more than US$13 billion to install and maintain over the next twenty years, according to the Association of American Railroads (AAR), which represents major US freight railroads and Amtrak.

According to the AAR, it is not clear whether railroads will meet the 2015 deadline. A report to Congress from the Federal Railroad Administration last August stated that due to significant technical and programmatic issues most railroads are not likely be able to fully implement positive train control by December 2015.

Holly Arthur, a spokeswoman for the AAR, said that, despite best efforts and financial investments, it is becoming clear that meeting the deadline is no longer realistic.  She said that each railroad’s positive train control system is very complex and must operate with other railroads’ systems. “The technology has never been used this way”, she said, “and must be designed, installed and tested before receiving federal certification.  This has never been done before.”

Related Content

  • May 14, 2018
    Network Rail launches digital strategy to improve travel experience
    Network Rail will carry out a digital railway strategy to help ensure that all new UK trains and signalling are digital or digital ready from 2019. The upgrade is aimed at improving the speed, punctuality and safety of the service. New digital rail technology will be utilised with the intention of allowing trains to run closer together and provide more frequent services. In addition, passengers are expected to be provided with improved mobile and WiFi connectivity. Train drivers will receive real-time
  • July 16, 2012
    A fresh approach to electronic fee collection
    The Utah Transit Authority (UTA) is pioneering fresh approaches to Electronic Fee Collection (EFC) deployment in the US. Its new system, operational since January 2009 on all buses and commuter trains, is the country's first full-network rollout of transit e-ticketing technology built on an open-payment network, according to the organisation's Technology Programme Development Manager Craig Roberts.
  • January 2, 2013
    Cambodia's first commercial train begins operation
    After years of renovation, Cambodia's modern railway system has commenced commercial rail operations on the 256 km southern line between the capital city of Phnom Penh and Sihanoukville Port. The renovation was carried out with financial support from the Asian Development Bank (ADB) and development partners. "ADB welcomes this first commercial train service to the Port of Sihanoukville which marks a significant development towards the completion of the long-awaited Pan-Asian railroad - a contiguous Iron Sil
  • December 6, 2013
    Transmax trials emergency vehicle ‘green wave’
    Existing equipment used in Australian emergency vehicle ‘green wave’ trial. Despite the lights and sirens, accidents between the motoring public and emergency vehicles on their way to/from the scene of an incident are relatively frequent. Figures from various sources indicate that road accidents are the second most frequent cause of death for on-duty fire fighter fatalities and that more than 90% of ambulance and fire engine accidents occur when the lights are on and the sirens wailing. Other studies indica