Skip to main content

Rail operator deploys Siemens technology for newly opened light rail line

TriMet's new MAX Orange Line, a light rail project between Portland and Milwaukie in the US incorporates Siemens’ advanced rail technologies, including its S70 light rail vehicles, rail signalling and communication systems and the company's first Sitras SES energy storage unit in the US that uses regenerative braking to sustainably power the line. The 12 kilometre line is the region's sixth construction project of the development project Metropolitan Area Express (MAX) to expand the city's transport net
September 22, 2015 Read time: 2 mins
1272 TriMet's new MAX Orange Line, a light rail project between Portland and Milwaukie in the US incorporates 189 Siemens’ advanced rail technologies, including its S70 light rail vehicles, rail signalling and communication systems and the company's first Sitras SES energy storage unit in the US that uses regenerative braking to sustainably power the line.

The 12 kilometre line is the region's sixth construction project of the development project Metropolitan Area Express (MAX) to expand the city's transport network to cope with expected population growth in the Portland area. The line will improve transit in the corridor that extends from the terminus of the MAX Green and Yellow lines at Portland State University in Downtown Portland to Milwaukie and North Clackamas County.

The newly redesigned light rail vehicles were built based on input from TriMet and passengers and include better sight lines for the driver, more ergonomically designed main cabins and larger displays for train operators so they are better able to monitor the vehicle's status to improve safety and efficiency. Maintenance enhancements were made based on TriMet's feedback including rearrangement of systems to increase accessibility to key components on the vehicles and improved diagnostic systems.

The innovative regenerative rail energy storage technology allows for energy created during braking to be stored and then re-used in one of two forms, energy savings or voltage stabilisation during peak demand times. TriMet will utilise the system in voltage stabilisation mode, which enables the system to avoid disruptions that can occur in mass transit operations if power drops below a certain level. The Sitras SES ensures the system voltage always remains within the required range and voltage-related disruptions no longer occur.

For more information on companies in this article

Related Content

  • HDR predicts an adaptable and flexible future for roadways
    December 19, 2016
    HDR consultants, Brian Swindell and Bernie Arseanea, consider managed lanes’ untapped potential. It is no surprise that corridor planning continues to challenge agencies and owners as demand continues to surpass roadway capacity.
  • Telvent to implement light rail priority system in Morocco
    February 2, 2012
    In a contract valued at US$3.2 million, Telvent is to implement its SmartMobility Light Rail solution on the new light rail system that will connect the Moroccan cities of Rabat and Salé.
  • Adaptive control reduces travel time, cuts congestion
    January 20, 2012
    Situated in San Diego County, California, the growing city of San Marcos has seen its population increase by 53.5 per cent since the turn of the century. Although this dramatic population increase has spurred economic growth bringing new business, homes and opportunities to the city, it has also increased traffic congestion along its central corridor, San Marcos Boulevard. This became the most congested arterial in the city, and, by 2006, the second-most travelled corridor in San Diego County.
  • Pricing practise for HOT lane operation
    May 11, 2017
    Timothy Compston weighs up the critical elements that keep the wheels of dynamic pricing schemes turning in today's high-occupancy toll (HOT) lanes. In the drive towards smarter tolling it is perhaps not surprising that sophisticated pricing algorithms are being rolled out to better reflect supply and demand on the roadway. This is the case with high-occupancy toll (HOT) lanes which a growing number of DoTs are seeing as a way of smoothing the operation of their existing, and planned, freeway infrastructure