Skip to main content

Potential to charge an EV in minutes claim

The University of Illinois at Urbana-Champaign has entered into a licensing agreement with Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market. The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore tech
April 17, 2012 Read time: 2 mins
4963 The University of Illinois at Urbana-Champaign has entered into a licensing agreement with 4964 Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market.

The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore technology has the potential to, for example, instantly charge cell phone batteries and rapidly charge laptops and electric cars, all within a matter of several minutes.

Xerion and the University believe that the patented StructurePore battery technology will enable Xerion to develop a rechargeable battery with significantly higher electrical capacity than that which is presently available with ultra-fast charge / ultra-fast discharge capabilities. Recent research and preliminary testing is said to have demonstrated to Xerion and its principals that the technology can function in both nickel metal hydride and lithium ion based batteries.

Xerion intends to direct future development of the technology by utilising higher power output chemistries. By focusing on these new electrode architectures, Dr. Braun and his Xerion colleagues believe that they may have found a way to greatly reduce the polarisation effects of current batteries, thereby greatly increasing power and density. Xerion says it believes that the development of a new prototype battery will contain what the company has labelled as ‘superhighway-like’ avenues for electrons and ions to move at ultra fast speeds while filling a charge and thus resulting in rapid battery charging capability.

This month, Xerion team members from Illinois, Colorado and Ohio will be moving into offices in the University of Illinois Research Park to collaborate with Dr. Braun on refinements to the technology.

For more information on companies in this article

Related Content

  • Ericsson demos autonomous parking via solar energy
    November 13, 2019
    Ericsson has launched a solar-powered car which finds out which parking spot contains the most sunshine and then moves to position itself accordingly. The company says it can drive autonomously to a particular space to recharge its batteries. The experimental Stella Era vehicle, which has a range of 1,800km, is equipped with Ericsson’s Solar Smart parking solution and can also share its energy with other electric vehicles parked next to it, the company adds. Solar Smart parking is based in Ericsson’s c
  • Europe will have over two million public charging points by 2017
    April 19, 2012
    A new report from Frost & Sullivan - “Strategic Technology and Market Analysis of Electric Vehicle Charging Infrastructure in Europe” predicts that the electric venicle (EV) charging infrastructure market could grow from less than 10,000 charging stations in 2010 to more than two million in 2017, 3% of which would be based on very-fast charging and inductive charging. “We are awaiting that European governments will forecast a budget of €700 million over the next seven years to build a charging infrastruc
  • On-demand is Denver’s command
    March 6, 2017
    While demand responsive transit overcomes many problems, it has been too expensive to provide for the general public but Denver believes it may have found a solution. Cost-efficiently meeting fluctuating passenger levels within available resources can prove a serious challenge for general publicoriented demand responsive transit. There is growing US interest in this mode - as distinct from the already established use of demand responsive transit for specialised needs, such as paratransit for the disabled –
  • VW & BP move fast on EVs
    May 2, 2022
    Industry giants have partnered to build a fast-charging network across Europe by 2024