Skip to main content

Potential to charge an EV in minutes claim

The University of Illinois at Urbana-Champaign has entered into a licensing agreement with Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market. The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore tech
April 17, 2012 Read time: 2 mins
4963 The University of Illinois at Urbana-Champaign has entered into a licensing agreement with 4964 Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market.

The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore technology has the potential to, for example, instantly charge cell phone batteries and rapidly charge laptops and electric cars, all within a matter of several minutes.

Xerion and the University believe that the patented StructurePore battery technology will enable Xerion to develop a rechargeable battery with significantly higher electrical capacity than that which is presently available with ultra-fast charge / ultra-fast discharge capabilities. Recent research and preliminary testing is said to have demonstrated to Xerion and its principals that the technology can function in both nickel metal hydride and lithium ion based batteries.

Xerion intends to direct future development of the technology by utilising higher power output chemistries. By focusing on these new electrode architectures, Dr. Braun and his Xerion colleagues believe that they may have found a way to greatly reduce the polarisation effects of current batteries, thereby greatly increasing power and density. Xerion says it believes that the development of a new prototype battery will contain what the company has labelled as ‘superhighway-like’ avenues for electrons and ions to move at ultra fast speeds while filling a charge and thus resulting in rapid battery charging capability.

This month, Xerion team members from Illinois, Colorado and Ohio will be moving into offices in the University of Illinois Research Park to collaborate with Dr. Braun on refinements to the technology.

For more information on companies in this article

Related Content

  • Evolving technology - debating the future of the ITS industry
    January 25, 2012
    Harry Voccola talks to ITS International about where he sees the intelligent transportation industry heading
  • Detection analysis technology successfully predicts traffic flows
    February 3, 2012
    David Crawford investigates new detection analysis technology from IBM. Locations on both the East and West Coasts of the US are scheduled for early deployments of IBM's new Traffic Prediction Tool (TPT) statistical analysis model for the fine-time resolution and near-term prediction of road flow conditions. Developed by IBM's Watson Research Laboratories, TPT is designed to analyse data from the the key detection indicators - average vehicle volumes and speeds passing a location in a given time interval -
  • GIS-based state of the art emergency response, damage recovery
    January 26, 2012
    The gecko is one of several members of the lizard family which demonstrate autotomy: the ability to re-grow a tail or some other appendage lost during a time of peril. The GITA's GECCo programme is looking to give US infrastructures much the same capability
  • Allguth and The Linde Group launch hydrogen filling station, Munich
    October 24, 2017
    Medium sized oil company Allguth has teamed up with technology company The Linde Group (LG) and opened a hydrogen (H2) filling station for fuel-cell vehicles in Munich’s Trudering district, Germany. The Federal Ministry for Transport and Digital Infrastructure (BMVI) supported the construction of the facility with €400,000 (£356,000) from its National Innovation Programme for Hydrogen and Fuel Cell Technology (NIP) and it will be operated by the infrastructure partner H2 Mobility.