Skip to main content

Potential to charge an EV in minutes claim

The University of Illinois at Urbana-Champaign has entered into a licensing agreement with Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market. The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore tech
April 17, 2012 Read time: 2 mins
4963 The University of Illinois at Urbana-Champaign has entered into a licensing agreement with 4964 Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market.

The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore technology has the potential to, for example, instantly charge cell phone batteries and rapidly charge laptops and electric cars, all within a matter of several minutes.

Xerion and the University believe that the patented StructurePore battery technology will enable Xerion to develop a rechargeable battery with significantly higher electrical capacity than that which is presently available with ultra-fast charge / ultra-fast discharge capabilities. Recent research and preliminary testing is said to have demonstrated to Xerion and its principals that the technology can function in both nickel metal hydride and lithium ion based batteries.

Xerion intends to direct future development of the technology by utilising higher power output chemistries. By focusing on these new electrode architectures, Dr. Braun and his Xerion colleagues believe that they may have found a way to greatly reduce the polarisation effects of current batteries, thereby greatly increasing power and density. Xerion says it believes that the development of a new prototype battery will contain what the company has labelled as ‘superhighway-like’ avenues for electrons and ions to move at ultra fast speeds while filling a charge and thus resulting in rapid battery charging capability.

This month, Xerion team members from Illinois, Colorado and Ohio will be moving into offices in the University of Illinois Research Park to collaborate with Dr. Braun on refinements to the technology.

For more information on companies in this article

Related Content

  • Electric boats and ships 2017-2027: Large market emerging, says IDTechEx
    January 13, 2017
    Analysts at IDTechEx have issued a new report, Electric Boats and Ships 2017-2027 looking at this fragmented but often highly profitable and growing sector. It says there are already over 100 manufacturers of electric boats and ships. The report finds that the market for hybrid and pure electric boats and ships will rise rapidly to over US$20 billion worldwide in 2027 for non-military versions. The recreational boat market is the largest and fastest growing electric marine market in sales number, followe
  • Do buses need subsidies in congestion charging areas
    June 20, 2016
    David Crawford takes a look at the debate surrounding bus subsidies. Subsidies for public transport are a well-known and frequently-used policy tool directed at reducing the high environmental and social costs of peak-period traffic congestion. But at the end of last year the Swedish Centre for Transport Studies published a working paper entitled ‘Should buses still be subsidised in Stockholm?’ This concluded that the subsidy levels currently being applied in Stockholm could be nearly halved by setting bus
  • Tributes paid to IRD founder Art Bergan
    May 29, 2025
    Bergan developed one of world's first WiM systems in 1970s
  • Machine vision - cameras for intelligent traffic management
    January 25, 2012
    For some, machine vision is the coming technology. For others, it’s already here. Although it remains a relative newcomer to the ITS sector, its effects look set to be profound and far-reaching. Encapsulating in just a few short words the distinguishing features of complex technologies and their operating concepts can sometimes be difficult. Often, it is the most subtle of nuances which are both the most important and yet also the most easily lost. Happily, in the case of machine vision this isn’t the case: