Skip to main content

Potential to charge an EV in minutes claim

The University of Illinois at Urbana-Champaign has entered into a licensing agreement with Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market. The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore tech
April 17, 2012 Read time: 2 mins
4963 The University of Illinois at Urbana-Champaign has entered into a licensing agreement with 4964 Xerion Advanced Battery Corp. under which Xerion has the exclusive right to bring the University’s StructurePore battery-charging technology to the market.

The StructurePore technology was developed by Paul Braun, Ph. D., of the Department of Materials, Science & Engineering at the University of Illinois, who is presently also an officer and director of Xerion. He and his colleagues believe that the StructurePore technology has the potential to, for example, instantly charge cell phone batteries and rapidly charge laptops and electric cars, all within a matter of several minutes.

Xerion and the University believe that the patented StructurePore battery technology will enable Xerion to develop a rechargeable battery with significantly higher electrical capacity than that which is presently available with ultra-fast charge / ultra-fast discharge capabilities. Recent research and preliminary testing is said to have demonstrated to Xerion and its principals that the technology can function in both nickel metal hydride and lithium ion based batteries.

Xerion intends to direct future development of the technology by utilising higher power output chemistries. By focusing on these new electrode architectures, Dr. Braun and his Xerion colleagues believe that they may have found a way to greatly reduce the polarisation effects of current batteries, thereby greatly increasing power and density. Xerion says it believes that the development of a new prototype battery will contain what the company has labelled as ‘superhighway-like’ avenues for electrons and ions to move at ultra fast speeds while filling a charge and thus resulting in rapid battery charging capability.

This month, Xerion team members from Illinois, Colorado and Ohio will be moving into offices in the University of Illinois Research Park to collaborate with Dr. Braun on refinements to the technology.

For more information on companies in this article

Related Content

  • Q-free unveils new products
    June 18, 2014
    Q-Free has added two new high performance products to its product portfolio, both with low power consumption and long life use. The OBU615 is a Dedicated Short-Range Communication-based (DSRC) on-board unit (OBU) for applications such as electronic toll collection (ETC) and congestion charging, automatic vehicle identification (AVI), electronic registration identification (ERI), access control and parking. The device uses the same in-vehicle mounting as he OBU610, reducing logistic and operational costs
  • Taking the hassle out of parking
    April 29, 2015
    A team of senior electrical and computer engineers from Rice University in Houston, Texas, has developed a new parking technology called ParkiT, with the aim of making it easier to find a parking space in a crowded car park. The team claims the new system is cheaper than sensor technology currently being used and would provide car park managers and attendants with real time information on available parking spaces. That information could then be shared with drivers through electronic signs or a driver-fri
  • Gothenburg to collect road condition data 
    August 9, 2021
    The municipality is working with ViaPM, Nira Dynamics and the Luleå University of Technology
  • Securing V2X communications
    June 6, 2016
    Cybersecurity developments are moving fast in the automotive sector, but they’re a significant hurdle for the roll-out of C-ITS applications. Jon Masters reports. In the wake of the high-profile hacking of the Jeep Cherokee and problems like the flaw in the Nissan Leaf’s companion app that could compromise the security of data about recent journeys, initiatives linked to vehicle cybersecurity seem to be moving rapidly.