Skip to main content

Partnership announced between Econolite and Savari

Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.
October 10, 2016 Read time: 2 mins

6692 Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with 8442 Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.

The two companies will continue to build on previous connected vehicle in the sales, marketing and manufacturing of Savari’s StreetWave roadside units (RSUs) and Econolite’s ITS solutions that leverage Savari’s latest V2I safety applications. These include curve speed warning (CSW), work zone warning (WZW) and in-vehicle signal phase and timing (SPaT).

“We are living in transformative times in the ITS industry,” said Econolite Group Chief Technology Officer, Gary Duncan. “With the rapid development of connected and automated vehicle and smart city initiatives, the importance of V2I capabilities will continue to grow. Through the combined expertise and technologies of Econolite Group and Savari, we can quickly help cities and transportation agencies successfully navigate and deploy the V2I systems that will help improve safety and enhance transportation efficiencies on our nation’s highways.”

Econolite Group and Savari have collaborated on a number of connected vehicle research projects and proof of concept demonstrations. This cooperation most recently occurred during the Multi-Modal Intelligent Traffic Signal System (MMITSS) project which takes advantage of connected vehicles to optimise intersection operation and provide improved response to priority requests for emergency, transit and freight vehicles. MMITSS leveraged ITS systems from Econolite and V2X communication solutions from Savari together with advanced control and priority concepts developed by the University of Arizona.

“Our previous successful collaboration on connected vehicle projects provided great insight into our collective capabilities,” said Ravi Puvvala, CEO of Savari.

“V2X safety communication technology, which includes V2V, V2I and V2P hardware and applications, forms the foundation of every smart city’s automated urban transportation system.”

For more information on companies in this article

Related Content

  • Econolite signals Florida priority with $7.2m contract
    June 3, 2024
    Eight-year deal will integrate LeeTran public transportation and emergency services
  • Inrix expands Signal Analytics capabilities 
    February 19, 2021
    Operators can now understand performance of 210,000 signalised intersections, firm says 
  • Real time field asset and management system from Econolite
    July 18, 2013
    Centracs MMS, Econolite’s new automated field asset and management system for the intelligent transportation systems (ITS) industry, is a simple-to-use Geographic Information System (GIS)-based proactive ITS asset management and maintenance management tool. It enables Departments of Transport, Metropolitan Planning Organisations and signal maintenance organisations to track assets in real-time and through the entire life cycle. Offering both workstation and mobile device interfaces, it supports preventativ
  • University research shows a few self-driving cars can improve traffic flow
    May 15, 2017
    The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine