Skip to main content

Partnership announced between Econolite and Savari

Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.
October 10, 2016 Read time: 2 mins

6692 Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with 8442 Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.

The two companies will continue to build on previous connected vehicle in the sales, marketing and manufacturing of Savari’s StreetWave roadside units (RSUs) and Econolite’s ITS solutions that leverage Savari’s latest V2I safety applications. These include curve speed warning (CSW), work zone warning (WZW) and in-vehicle signal phase and timing (SPaT).

“We are living in transformative times in the ITS industry,” said Econolite Group Chief Technology Officer, Gary Duncan. “With the rapid development of connected and automated vehicle and smart city initiatives, the importance of V2I capabilities will continue to grow. Through the combined expertise and technologies of Econolite Group and Savari, we can quickly help cities and transportation agencies successfully navigate and deploy the V2I systems that will help improve safety and enhance transportation efficiencies on our nation’s highways.”

Econolite Group and Savari have collaborated on a number of connected vehicle research projects and proof of concept demonstrations. This cooperation most recently occurred during the Multi-Modal Intelligent Traffic Signal System (MMITSS) project which takes advantage of connected vehicles to optimise intersection operation and provide improved response to priority requests for emergency, transit and freight vehicles. MMITSS leveraged ITS systems from Econolite and V2X communication solutions from Savari together with advanced control and priority concepts developed by the University of Arizona.

“Our previous successful collaboration on connected vehicle projects provided great insight into our collective capabilities,” said Ravi Puvvala, CEO of Savari.

“V2X safety communication technology, which includes V2V, V2I and V2P hardware and applications, forms the foundation of every smart city’s automated urban transportation system.”

For more information on companies in this article

Related Content

  • Hot topics at ITS Australia conference
    May 15, 2014
    The challenges of congested city transport systems and safety were the hot topics at the intelligent transport systems (ITS) business exchange conference held recently in Melbourne featuring speakers and delegates from Asia, Australia, Europe, USA and New Zealand. Hosted by ITS Australia, the conference attracted 200 participants from seven nations and facilitated an international exchange about innovative technologies and successfully deployed solutions to major transport issues across public, private a
  • ABI Research sees V2X technology gaining momentum in automotive
    June 12, 2017
    The latest report from ABI Research sees vehicle-to-everything (V2X) finally gaining momentum in the smart mobility industry. Illustrating this is a growing number of initiatives, trials, and product launches. Cellular V2X, aggressively promoted by the 5G Automotive Association (5GAA), now offers a potentially more flexible alternative to the legacy IEEE 802.11p. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) collectively refer to V2X.
  • Four finalists for Detroit's Sustainable Cities Challenge
    June 25, 2025
    Ideas seek to improve efficiency of freight operations in Eastern Market area
  • Huawei addresses congested, separated rail networks with cloud solution
    December 20, 2024
    A shift to a cloud-based operating regime solves the problems of trying to make cluttered, geographically-discrete terrestrial systems work together