Skip to main content

Partnership announced between Econolite and Savari

Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.
October 10, 2016 Read time: 2 mins

6692 Econolite Group has used the ITS World Congress Melbourne to announce it has entered into negotiations with 8442 Savari to form a partnership to accelerate the deployment of connected and automated vehicle technologies and solutions. The partners will focus on vehicle-to-infrastructure (V2I) safety applications.

The two companies will continue to build on previous connected vehicle in the sales, marketing and manufacturing of Savari’s StreetWave roadside units (RSUs) and Econolite’s ITS solutions that leverage Savari’s latest V2I safety applications. These include curve speed warning (CSW), work zone warning (WZW) and in-vehicle signal phase and timing (SPaT).

“We are living in transformative times in the ITS industry,” said Econolite Group Chief Technology Officer, Gary Duncan. “With the rapid development of connected and automated vehicle and smart city initiatives, the importance of V2I capabilities will continue to grow. Through the combined expertise and technologies of Econolite Group and Savari, we can quickly help cities and transportation agencies successfully navigate and deploy the V2I systems that will help improve safety and enhance transportation efficiencies on our nation’s highways.”

Econolite Group and Savari have collaborated on a number of connected vehicle research projects and proof of concept demonstrations. This cooperation most recently occurred during the Multi-Modal Intelligent Traffic Signal System (MMITSS) project which takes advantage of connected vehicles to optimise intersection operation and provide improved response to priority requests for emergency, transit and freight vehicles. MMITSS leveraged ITS systems from Econolite and V2X communication solutions from Savari together with advanced control and priority concepts developed by the University of Arizona.

“Our previous successful collaboration on connected vehicle projects provided great insight into our collective capabilities,” said Ravi Puvvala, CEO of Savari.

“V2X safety communication technology, which includes V2V, V2I and V2P hardware and applications, forms the foundation of every smart city’s automated urban transportation system.”

For more information on companies in this article

Related Content

  • US university investigates smart car tyres
    January 15, 2016
    Researchers at Virginia Tech, Penn State University, and 12 industry partners are collaborating on a US$1.2 million National Science Foundation-funded project to integrate sensors into car tyres, with the aim of providing information on the vehicle’s speed and road conditions. Saied Taheri, an associate professor of mechanical engineering in Virginia Tech’s College of Engineering and the director of the Center for Tire Research (CenTiRe), is the project’s lead investigator. Taheri has been working for
  • Cohda: CPM helps AVs see through blind spots 
    February 3, 2021
    Collective perceptive messaging allowed RSU to share information by using V2X tech 
  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change
  • Kyocera participates in self-driving bus test in Japan
    December 21, 2018
    Kyocera has installed roadside units to enable Vehicle to Infrastructure (V2I) communications for a self-driving bus test in Japan. The Mobility Innovation Consortium, a group led by East Japan Railway (JR East), is organising the three-month trial to evaluate self-driving technology for bus transit applications. Advanced Smart Mobility will provide the bus, which will operate on JR East’s bus rapid transit (BRT) lines in Rikuzentakata City, Iwate Prefecture. High-sensitivity magnetic impedance