Skip to main content

Oxford University develops self-driving car

Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions. Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a Nissan Leaf electric car and tested on private roads around the university. The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the
February 18, 2013 Read time: 3 mins
Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions.

Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a 838 Nissan Leaf electric car and tested on private roads around the university.  The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the driver when it is ready to take over - and by pressing a button on a screen, the driver can let the computer take the strain.

Newman thinks that it could be only fifteen years before self-driving systems become commonplace in cities as the price of installing the systems drops: "At present it costs about US$7,700, but we're working to reduce that to US$155," he said.

The car has been tested running at up to 80 km/h, said Newman.

Rather than using GPS navigation, which can be unreliable in cities where buildings block signals, and only accurate to a few metres, the British-developed system uses 3D laser scanning allied to computer storage to build up a map of its surroundings – which is accurate to a few centimetres.

The auto-drive system works by recognising where it is, based on a laser scanner on the front of the car, comparing its surroundings to its stored data. The Oxford system, developed through funding from the 2220 Engineering and Physical Sciences Research Council, could be extended so that each car downloads data from passing cars, or over the internet via 3G and 4G connections to a central system. That would mean that the car wouldn't have to store data for the entire country at any time: "You don't go from London to Glasgow in a single hop. So as you're driving along, the car could download the new maps from the internet for the journey ahead."

Newman's team has only been working on the scheme for two years, and only received the Nissan Leaf car in September. Yet it has been able to connect the computer control systems to its steering wheel, brakes and other systems. "Cars these days are pretty much fly-by-wire – the computer controls it all," Newman said.

The computational power required to navigate is already cheaply available, as is the storage for the 3D maps that the car would use to figure out its location. "Our cities don't change very much, so robotic vehicles will see familiar structures and say 'I know this route - want me to drive?'"

But he emphasises that "it's not total autonomy for the car. It knows when things are good, and when the risks are reasonable, and then it will offer to take over." If the car can't make a match, it won't offer to drive – and the decision is always the driver's, Newman emphasised.

"What I'm really proud of is that this is British technology and British intellectual property," he said. "It shows what a British university group can do when we put our minds to it."

For more information on companies in this article

Related Content

  • University research shows a few self-driving cars can improve traffic flow
    May 15, 2017
    The presence of just a few autonomous vehicles can eliminate the stop-and-go driving of the human drivers in traffic, along with the accident risk and fuel inefficiency it causes, according to new research by the University of Illinois at Urbana-Champaign. Funded by the National Science Foundation’s Cyber-Physical Systems program, the research was led by a multi-disciplinary team of researchers with expertise in traffic flow theory, control theory, robotics, cyber-physical systems, and transportation engine
  • Intelligent intersection control
    April 12, 2013
    Intelligent intersection control systems have a growing role to play in making urban traffic more efficient. Robin Meczes reports. The idea of every traffic light turning green as you approach it has long been a dream for many an urban driver – and none more so than those driving heavy goods vehicles (HGVs), which are slow and difficult to bring to a halt and then accelerate back to normal travel speed. But that dream has become a reality for some drivers in a small number of cities around Europe in the las
  • Ford developing complete virtual factory
    August 2, 2012
    Ford is developing a complete virtual factory to simulate the full assembly line production process. The company says this will enable it to improve quality and cut costs in real world manufacturing facilities by creating and analysing computer simulations of vehicle production procedures.
  • Utah DoT boss: 'Create a culture with no fear of failure'
    December 9, 2021
    ITS professionals have to embrace the possibility of failing if they want to innovate.