Skip to main content

Oxford University develops self-driving car

Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions. Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a Nissan Leaf electric car and tested on private roads around the university. The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the
February 18, 2013 Read time: 3 mins
Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions.

Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a 838 Nissan Leaf electric car and tested on private roads around the university.  The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the driver when it is ready to take over - and by pressing a button on a screen, the driver can let the computer take the strain.

Newman thinks that it could be only fifteen years before self-driving systems become commonplace in cities as the price of installing the systems drops: "At present it costs about US$7,700, but we're working to reduce that to US$155," he said.

The car has been tested running at up to 80 km/h, said Newman.

Rather than using GPS navigation, which can be unreliable in cities where buildings block signals, and only accurate to a few metres, the British-developed system uses 3D laser scanning allied to computer storage to build up a map of its surroundings – which is accurate to a few centimetres.

The auto-drive system works by recognising where it is, based on a laser scanner on the front of the car, comparing its surroundings to its stored data. The Oxford system, developed through funding from the 2220 Engineering and Physical Sciences Research Council, could be extended so that each car downloads data from passing cars, or over the internet via 3G and 4G connections to a central system. That would mean that the car wouldn't have to store data for the entire country at any time: "You don't go from London to Glasgow in a single hop. So as you're driving along, the car could download the new maps from the internet for the journey ahead."

Newman's team has only been working on the scheme for two years, and only received the Nissan Leaf car in September. Yet it has been able to connect the computer control systems to its steering wheel, brakes and other systems. "Cars these days are pretty much fly-by-wire – the computer controls it all," Newman said.

The computational power required to navigate is already cheaply available, as is the storage for the 3D maps that the car would use to figure out its location. "Our cities don't change very much, so robotic vehicles will see familiar structures and say 'I know this route - want me to drive?'"

But he emphasises that "it's not total autonomy for the car. It knows when things are good, and when the risks are reasonable, and then it will offer to take over." If the car can't make a match, it won't offer to drive – and the decision is always the driver's, Newman emphasised.

"What I'm really proud of is that this is British technology and British intellectual property," he said. "It shows what a British university group can do when we put our minds to it."

For more information on companies in this article

Related Content

  • Coming round again
    June 28, 2012
    A colleague of mine, Mike Woof, the Editor of World Highways magazine, recently attended an open day event at a major ITS research establishment, the object of which was to showcase how the use of in-vehicle ITS technologies could improve fuel consumption and reduce emissions. Mike's expertise brings him into daily contact with the types of plant and equipment used to build roads and, as he related to me afterwards, he'd gone to the event filled with enthusiasm and came away somewhat disheartened.
  • Promoting understanding of the need for enforcement
    March 15, 2012
    Changing needs of mature and emerging economies are demanding more rigorous enforcement services. Gatso’s managing director Timo Gatsonides spells out the challenge to Jason Barnes. As geographical markets mature and saturate, it might seem that the only thing for suppliers to do is to look further afield in search of new opportunities. The automated enforcement market in north western Europe could be a case in point, but Gatso’s managing director Timo Gatsonides begs to differ. The sheer number of new syst
  • Dallas launches ICM program
    August 28, 2013
    Transportation officials in the Dallas area are to introduce an Integrated Corridor Management (ICM) along the 28-mile US 75 from the city to its northern suburbs. ICM works by collecting data about traffic conditions, then sending it through software that can analyse the data and help operators select the best strategies for managing it. A web interface ensures all the relevant agencies working on the corridor are aware of what is happening. Commuters will be advised of the situation via a new website
  • Cold efficiency
    July 24, 2012
    Tools to support operational decisions in winter maintenance can remove subjectivity and increase efficiency; Vaisala's Danny Johns talks about latest developments Even the presence of trees at the roadside can have an effect on temperature An effective Road Weather Information System (RWIS) network can save a local road authority or jurisdiction tens of thousands of dollars or Euros'-worth of labour and consumables in a single night. Get those winter maintenance operations right over just three or four nig