Skip to main content

Oxford University develops self-driving car

Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions. Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a Nissan Leaf electric car and tested on private roads around the university. The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the
February 18, 2013 Read time: 3 mins
Oxford University scientists have developed a self-driving car system that can be installed in existing cars and can cope with snow, rain and other weather conditions.

Developed by a team led by Professor Paul Newman at Oxford University, the new system has been installed in a 838 Nissan Leaf electric car and tested on private roads around the university.  The car will halt for pedestrians, and could take over the tedious parts of driving such as negotiating traffic jams or regular commutes. The car alerts the driver when it is ready to take over - and by pressing a button on a screen, the driver can let the computer take the strain.

Newman thinks that it could be only fifteen years before self-driving systems become commonplace in cities as the price of installing the systems drops: "At present it costs about US$7,700, but we're working to reduce that to US$155," he said.

The car has been tested running at up to 80 km/h, said Newman.

Rather than using GPS navigation, which can be unreliable in cities where buildings block signals, and only accurate to a few metres, the British-developed system uses 3D laser scanning allied to computer storage to build up a map of its surroundings – which is accurate to a few centimetres.

The auto-drive system works by recognising where it is, based on a laser scanner on the front of the car, comparing its surroundings to its stored data. The Oxford system, developed through funding from the 2220 Engineering and Physical Sciences Research Council, could be extended so that each car downloads data from passing cars, or over the internet via 3G and 4G connections to a central system. That would mean that the car wouldn't have to store data for the entire country at any time: "You don't go from London to Glasgow in a single hop. So as you're driving along, the car could download the new maps from the internet for the journey ahead."

Newman's team has only been working on the scheme for two years, and only received the Nissan Leaf car in September. Yet it has been able to connect the computer control systems to its steering wheel, brakes and other systems. "Cars these days are pretty much fly-by-wire – the computer controls it all," Newman said.

The computational power required to navigate is already cheaply available, as is the storage for the 3D maps that the car would use to figure out its location. "Our cities don't change very much, so robotic vehicles will see familiar structures and say 'I know this route - want me to drive?'"

But he emphasises that "it's not total autonomy for the car. It knows when things are good, and when the risks are reasonable, and then it will offer to take over." If the car can't make a match, it won't offer to drive – and the decision is always the driver's, Newman emphasised.

"What I'm really proud of is that this is British technology and British intellectual property," he said. "It shows what a British university group can do when we put our minds to it."

For more information on companies in this article

Related Content

  • Long range radar aids wide area traffic monitoring
    March 16, 2012
    Applications of long range radar technology are demonstrating its effectiveness as a first line of defence for highway managers – adding greater resilience and capability to existing systems. Development efforts are bringing long range millimetric wave radar to the fore as a very useful tool for managers of highway networks. Application of radar for wide area monitoring in traffic management remains in its infancy. But recent projects are demonstrating how it can now serve to enhance detection of incidents
  • Cubic: ‘Let your customers know you’re thinking of them’ 
    April 8, 2020
    As the ITS industry worldwide comes to terms with the impact of the coronavirus pandemic, companies are finding positive ways to respond.
  • One eye on the future
    December 12, 2013
    Mobileye’s Itay Gat discusses the evolution of monocular solutions for assisted and autonomous driving with Jason Barnes. Founded in 1999, Israeli company Mobileye manufactures and supplies advanced driver assistance systems (ADAS) based on its EyeQ family of systems-on-chips for image processing for solutions such as lane sensing, traffic sign recognition, vehicle and pedestrian detection. Its products are used by both the OEM and aftermarket sectors. The company’s visual interpretation algorithms drive
  • Seoul Robotics solves wrong-way challenge
    September 20, 2022
    Seoul Robotics is here with its Wrong-Way Detection (WWD) system, which the 3D perception company says is a first-of-its-kind solution. The plug-and-play system collects and interprets 3D data to track wrong-way movement on roads and highways.