Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

For more information on companies in this article

Related Content

  • Upgrading New Yorks's traffic signal timings
    February 28, 2013
    The New York City Department of Transportation instituted the Midtown in Motion project to promote multimodal mobility in the Midtown Core of Manhattan, a 110 square block area or “zone” from Second to Sixth Avenue and 42nd to 57th Street. Control extended from 86th Street to 23rd Street, focused on the core zone. MiM provides signal timing changes on two levels: Level 1 control starts from a pre-stored library of timing plans. These are designed offline and are relevant to arterials inside the Midtown stud
  • Growth of telematics-based pay as you drive car insurance systems
    July 17, 2012
    Car insurance made cheaper by telematics has returned to news headlines in the UK this year. Will it really take off this time and can vehicle tracking provide an effective tool for enforcing or encouraging insurance compliance? Jon Masters reports Will 2012 go down as the year that telematics-based car insurance took off? In the UK at least, a groundswell of new policies, with premiums priced on the basis of tracked and analysed driving style, suggests a turning point has been reached. Some would argue t
  • Ford Opens new Silicon Valley research centre
    January 26, 2015
    Ford’s newly opened Research and Innovation Center Palo Alto, US, will drive the company’s innovation in connectivity, mobility, autonomous vehicles, customer experience and big data, it says. The new research centre will continue the company’s work on autonomous vehicles, including ongoing work with University of Michigan and Massachusetts Institute of Technology. It will also expand collaboration with Stanford University that started in 2013 and will contribute a Fusion autonomous research vehicle to t
  • The bus future is electric, says UITP
    January 11, 2017
    More and more cities in Europe and around the world are turning to electric buses (or e-buses) in an effort to go green according to UITP’s new ZeEUS eBus Report. The report, published as part of the Zero Emission Urban Bus System project, reveals that 19 public transport operators and authorities, covering around 25 European cities, have a published e-bus strategy for 2020. By this date, there should be more than 2,500 electric buses operating in these cities, representing six per cent of their total fl