Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

For more information on companies in this article

Related Content

  • Reflecting on five years of important ITS progress
    January 7, 2013
    Former head of the ITS Joint Program Office Shelley Row has passed the baton to a new director. Now working as an independent consultant, here she reflects on her five years at the helm of the JPO and what the future may hold for ITS in the US. During a mid-morning in Paris earlier this year, having just landed, I decided to take a trip on the city’s subway (Paris’ underground metro) into the city centre. A family with a small boy – about nine years old – boarded the same train. They were American and we st
  • Observing driver behaviour in real traffic condition
    March 16, 2016
    The EU’s UDRIVE project will investigate driver behaviour in terms of road safety and the decarbonisation of road transport, as Nicole van Nes and Silvia Curbelo explain. There were nearly 25,700 fatalities on European Union (EU) roads in 2014 or, to look it another way, roughly 70 people are killed in traffic accidents on European roads every day - and many more are injured. Around 22% of the fatalities are pedestrians, 15% will be motorcycle riders and 8% cyclists. So despite the improvements in road safe
  • The Dutch revolution in smart EV charging
    October 18, 2016
    By turning itself into one huge Living Lab for Smart Charging of electric vehicles, the Netherlands aims to become the international frontrunner for smart charging EVs, using them to store peak solar and wind power production. Already 325 municipalities, including Amsterdam, Rotterdam, Utrecht and The Hague, have joined the Dutch Living Lab Smart Charging project, representing 80 per cent of all public charging stations. It is also supported by the Dutch government and has been joined by some The New Motion
  • Global mobility study: world on the move
    November 27, 2020
    ERF reviews impact of new mobility on road infrastructure in 20 countries pre-Covid