Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

For more information on companies in this article

Related Content

  • SCATS study shows significant savings
    December 16, 2013
    Australian study quantifies the benefits of SCATS to the motorists, the environment and the economy. Opportunity weekday cost savings potential of some AUD16 million (US$15.2 million) has emerged from rigorous analysis of a one-day study of Australia’s Sydney Coordinated Adaptive Traffic System (SCATS) in operation. This represents 27% of the total cost of a real alternative semi-adaptive traffic control. The estimated indicative annual weekday-based value is AUD3,900 million (US$3,705 million) or 0.9% of t
  • Pricing practise for HOT lane operation
    May 11, 2017
    Timothy Compston weighs up the critical elements that keep the wheels of dynamic pricing schemes turning in today's high-occupancy toll (HOT) lanes. In the drive towards smarter tolling it is perhaps not surprising that sophisticated pricing algorithms are being rolled out to better reflect supply and demand on the roadway. This is the case with high-occupancy toll (HOT) lanes which a growing number of DoTs are seeing as a way of smoothing the operation of their existing, and planned, freeway infrastructure
  • Getting more for less from traffic data
    August 15, 2012
    Collection of traffic and transit data has grown significantly, combining with advances in connectivity and computational modelling to good effect. Desire to do more with less – to make budgets go further – has helped create a boom in the collection and study of traffic and transport data. Studies are becoming longer, greater in number and further in-depth as more intelligence is sought, plus, transportation agencies are looking to make processes of data collection less costly, or more efficient.
  • Hybrid and EVs growth impact on traction motors predicted by Frost & Sullivan
    May 17, 2012
    Electrification in vehicles is a key trend in the automotive industry. The increase in electric components within vehicles is boosting the market for traction motors and Frost & Sullivan says it anticipates the European traction motor market to grow at a compound annual growth rate (CAGR) of 50 per cent for hybrid electric vehicles (HEVs) and electric vehicles (EVs). Permanent magnet motors are expected to dominate the market by virtue of their performance and efficiency. However, the growing concern over t