Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

Related Content

  • February 16, 2023
    US announces major EV infrastructure boost
    Biden-Harris Administration says measures mean "great American road trip can be electrified"
  • June 8, 2015
    ITS solutions to keep truck traffic moving
    David Crawford reviews freight management initiatives. Managing truck traffic to minimise its environmental impacts, without adversely impacting on its critical economic role, continues to drive ITS-based solutions in both urban and interurban contexts.
  • May 7, 2020
    Columbia brings the noise to VRUs
    ‘Twalking’ – the practice of staring at a smartphone screen while walking – may be a matter for wry amusement for the non-addicted, but is potentially hazardous to the phone users. A US research project may have found a solution, finds Alan Dron
  • December 20, 2016
    Electric vehicles in construction are the future, say researchers
    The industrial and commercial sector is the largest part of the electric vehicle value market and that will continue to be the case according to analysis in the IDTechEx report, Industrial and Commercial Electric Vehicles 2017-2027. Buses are the largest part of that and they are mainly made in China for China, where typical orders are ten times the size of orders elsewhere. Less dramatically, construction, mining and agriculture do not see 70 per cent grants for EV versions yet they are steadily becomin