Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

Related Content

  • September 6, 2017
    Remote remedies help US authorities identify bridge deficiencies
    Every day 185 million vehicles – cars, trucks, school buses, emergency response units - cross one or more of America’s 55,710 'structurally compromised' steel and concrete road bridges, the highest concentration of which are in Iowa (nearly 5,000), Pennsylvania and Oklahoma. Nearly 2,000 of these crossings are located on interstate highways, according to the American Road and Transportation Builders Association's recent analysis of the US Department of Transportation's 2016 National Bridge Inventory.
  • March 13, 2015
    Feasibility study to look at use of dynamic wireless power transfer on UK roads
    The UK’s Transport Research Laboratory (TRL) has been commissioned by the Highways Agency to undertake a feasibility study into whether dynamic wireless power transfer (WPT) technology can be used on England’s motorways and major A roads, the Strategic Road Network, to prepare for and potentially encourage, greater EV take-up. This study is the first part in a much larger programme of research and trialling for dynamic WPT technology to be undertaken in the UK. TRL was selected to deliver the feasibility st
  • February 9, 2021
    Continental: Covid may spark China EV surge
    86% of Chinese respondents to German manufacturer's survey are open to buying EVs
  • August 16, 2013
    Foldable EV unveiled
    A group of scientists from Korea Advanced Institute of Science and Technology (KAIST) has developed what is claimed to be the country’s first foldable electric vehicle (EV), the school has announced. Developed by Seo In-soo and his research team, the Armadillo-T uses a 13.6 kWh battery and four independent in-wheel motors that enable it to reach 60 kilometres per hour and travel approximately 100 kilometres on a single charge. The small, battery-powered vehicle weighs less than 500 kilograms and measures 2.