Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

Related Content

  • September 10, 2014
    Toshiba introduces new super charge ion battery
    Electricity is in the air – and in Toshiba’s new super charge ion battery (SCiB), on display at ITS World Congress. SCiB batteries can be charged in five to 10 minutes, compared with the traditional overnight charging required for applications such as electric buses. SCiB charges even faster than current fast charge batteries, which take 30 minutes. The ultra-fast charging is possible because SCiB can tolerate a high current of 400 amps, almost three times higher than today’s normal fast charging batt
  • June 30, 2016
    Electric buses take new forms
    Data from IDTechEx claims there are many new forms of electric bus arriving in quite a rush. Last year saw pure electric double decker and articulated buses. This year there is speculation that the work by Siemens of Germany on long distance pure electric trucks being charged by short lengths of overhead catenary could also apply to buses. That should involve much lower cost than the other zero pollution option the fuel cell bus. Now Switzerland has joined other places around the world newly exploring t
  • February 26, 2016
    New charging network brings electric motoring to UK drivers
    The completion of a new charging network that stretches the length of Britain’s busiest roads makes long-distance, cross-border journeys by electric vehicles (EV) a realistic prospect for millions more drivers in the UK and Ireland. The network stretches from Stranraer in Scotland to Suffolk in the East of England, from Hull in the North East to Holyhead in north-west Wales, connecting with Belfast in Northern Ireland and Dublin in the Republic of Ireland. Each installation includes at least two of t
  • March 11, 2016
    Nissan unveils ‘intelligent mobility’
    Pursuing goals of zero emission vehicles and zero fatalities on the road, Nissan has unveiled its vision for intelligent mobility, based on safety innovations through autonomous technology such as high-stability control and high-reliability drive systems. At the core of Nissan intelligent mobility are three areas of innovation: Nissan Intelligent Driving spearheaded by Nissan’s autonomous drive technology, Piloted Drive, Nissan Intelligent Power and Nissan Intelligent Integration. Many of these advanc