Skip to main content

Nissan’s new analysis method may boost driving range of EVs

Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs). The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technolo
May 16, 2016 Read time: 2 mins
838 Nissan Motor Company and Nissan Arc have jointly developed an atomic analysis methodology that they claim will aid in boosting the performance of lithium-ion batteries and ultimately extend the driving range of zero-emission electric vehicles (EVs).

The breakthrough was the result of a combined R&D effort between Nissan Arc, a Nissan subsidiary, Tohoku University, the National Institute for Materials Science (NIMS), the Japan Synchrotron Radiation Research Institute (JASRI) and Japan Science and Technology Agency (JST).

The analysis examines the structure of amorphous silicon monoxide (SiO), widely seen as key to boosting next-generation lithium-ion battery (Li-ion) capacity, allowing researchers to better understand electrode structure during charging cycles.

Silicon (Si) is capable of holding greater amounts of lithium compared with common carbon-based materials, but in crystalline form possesses a structure that deteriorates during charging cycles, ultimately impacting performance. However, amorphous SiO is resistant to such deterioration.

Its base structure had been unknown, making it difficult for mass production. However, the new methodology provides an accurate understanding of the amorphous structure of SiO, based on a combination of structural analyses and computer simulations. The new findings indicate that its structure allows the storage of a larger number of Li-ions, in turn leading to better battery performance.

For more information on companies in this article

Related Content

  • Spanish city to test 200 EVs
    May 9, 2013
    The Spanish city of Malaga is to participate in the four-year Zem2All project to study the impact that the use of electric vehicles (EVs) have on the city. During the tests an in-depth study of the impact of EVs on the electricity grid will be carried out and the conditions for a widespread use of electric cars will be analysed. Researchers say results should provide information on the impact and management of e-mobility resources in cities of the future, ranging from the use of cars, charging infrastructur
  • Nissan sparks EV payment 'integration'
    August 12, 2020
    Electricity from EV batteries can be discharged to fund parking in Yokohama
  • Next-gen battery cell collaboration
    February 2, 2012
    Tesla Motors and Panasonic are collaborating to develop next-generation battery cells for Electric Vehicles (EVs).
  • Emissions reductions targets to have major impact on transport
    October 28, 2015
    As bold moves aimed at reducing greenhouse gas emissions have been introduced in California, David Crawford looks at the ramifications for transportation. California Governor Jerry Brown’s recent dramatic raising of the bar on emissions reduction policy for the state has won him praise from Japan, Australia, Europe and the secretariat of the critical UN conference on climate change being held in Paris in November/December 2015. His April 2015 executive order aimed at bringing emissions to 40% below 1990 lev