Skip to main content

Next-generation fuel cells ready for low-emission electricity production

The VTT Technical Research Centre of Finland, under the INNO-SOFC project and in collaboration with Convion and Elcogen, is developing a new-generation, long-life fuel cell system offering efficiency higher than that of competing technologies. The project aims to develop new, energy-efficient and commercially viable applications.
November 25, 2015 Read time: 2 mins

The 814 VTT Technical Research Centre of Finland, under the INNO-SOFC project and in collaboration with Convion and Elcogen, is developing a new-generation, long-life fuel cell system offering efficiency higher than that of competing technologies. The project aims to develop new, energy-efficient and commercially viable applications.

Fuel cells are used to generate low-emission electricity and heat. Thus far, the adoption of such systems into widespread use has been hindered by their short service life and high price. These factors have been made the key development areas of the INNO-SOFC project, which was launched in September and is funded by the EU and managed by VTT. The target is set to double the service life and halve the cost of fuel cell systems and enable the emergence of commercial applications.

VTT, in collaboration with Elcogen and other European partners and Convion, will develop a 50 kW fuel cell system that will have an efficiency of 60 per cent for electricity production and a total efficiency of 85 per cent. Elcogen will deliver the core of the system, the fuel cells. VTT will act as the project coordinator, supporting the R&D of the companies participating in the project and validating the service life of the system and the cells.

The new fuel cell system will generate normal alternating current and will be able to be used in several different applications. Fuel cells can be used to generate electricity and heat from methane produced by biomass at wastewater treatment and biogas plants. In addition to biogas, the distribution of liquefied natural gas will enable the use of fuel cell systems outside the current gas network.

Compared with competing systems, such as generators powered by a combustion engine, fuel cell systems exhibit a high efficiency level, low emissions, low noise and low vibration levels. Improved efficiency is especially pronounced in applications smaller than 1,000kW in power, in which fuel cells may exhibit efficiency double that of competing technologies and produce CO2 emissions that are correspondingly lower. Other emissions, such as particles, nitrogen oxides and noise, also remain at very low levels.

Other participants in the project include Dutch Energy Matters, Italian ENEA, Dutch ElringKlinger and Forschungszentrum Jülich.

The project, which commenced in September 2015, is scheduled for completion in April 2018.

Related Content

  • September 22, 2015
    Launch of UK wind hydrogen refuelling station
    Energy storage and clean fuel company ITM Power has launched its first public access hydrogen refuelling station at the Advanced Manufacturing Park, just off the M1, Junction 33 in South Yorkshire, funded by InnovateUK. The site, which as a public access refuelling station is the first of its kind in the UK, consists of a 225kW wind turbine coupled directly to an electrolyser, 220kg of hydrogen storage, a hydrogen dispensing unit and a 30kW fuel cell system capable of providing backup power generation fo
  • November 17, 2014
    Air quality tops transportation agendas
    Colin Sowman catches up on some of the latest research around outdoor pollution and looks at options available to authorities in areas of poor air quality. Iair quality hasn’t already reached the top of the agenda in transportation department meetings in your area, it probably soon will with national, trans-national and even global bodies calling for authorities to reduce pollution levels.
  • May 3, 2019
    Gearing up for the global electric vehicle revolution
    As transport, communications and energy networks become inextricably linked, policy makers are recognising the implications for our built environment – and the growing electric vehicle market will have a major impact on the world’s infrastructure, says Rolton Group’s Chris Evans
  • May 24, 2013
    Britain's first Bio-LNG filling station launched
    The UK's first open access Bio-LNG filling station, built by Gasrec , has been launched, marking the start of a nationwide investment in infrastructure seeking the ultimate prize of wiping out nearly two-thirds of the nation's heavy goods vehicle (HGV) emissions. Gasrec's ground-breaking new facility in Daventry is the first of its kind. It will lead to significant cuts in pollution and fuel costs; allow gas-powered or dual-fuel trucks to use Bio-LNG; and will operate in a similar way to a traditional petr