Skip to main content

New way of ‘harvesting’ energy from shock absorbers ‘could benefit transport industry’

A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning. Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings. The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of
October 31, 2016 Read time: 2 mins
A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning.

Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings.  The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of current progress in the field of vehicle energy harvesting and a detailed account of the theory and the practical development of his device, designed for installation in a heavy good vehicle.

After working on the mathematics, computational analysis and design of his device, Dr Wang constructed his full-size, ready-to-test prototype, which his supervisor Professor Ball says is a realisable application for energy recovery from a typical road vehicle.
 
Harvested energy can be used for any auxiliary purpose in a vehicle, said Professor Ball, and in hybrids it could recharge the electric motor.

The next stage is to work with an industrial partner to install and test Dr Wang’s system in a road-going vehicle.  But the technology has a wide application and there is every possibility that it could be adapted for rail vehicles, especially as Dr Wang has taken up a full-time research post at the University of Huddersfield’s Institute of Railway Research (IRR).

According to Dr Paul Allen, who leads the IRR’s Centre for Innovation in Rail, the IRR is now exploring how energy harvesting and modelling techniques can be applied to developing low-cost self-health monitoring dampers for railway vehicles, a project which already has two industrial partners.

Related Content

  • Modelling could reduce traffic mayhem
    May 6, 2016
    A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
  • Austrian Bike2CAV V2X project could mark turning point in cyclist safety
    May 10, 2023
    Research in Salzburg into C-ITS equips bikes with V2X tech to allow detection via ITS-G5
  • Barcelona metro trains now power EVs
    November 1, 2022
    Spanish transit agency is turning kinetic energy from braking trains into micromobility power
  • Confusion over electric motors for heavy trucks
    December 19, 2016
    According to Dr Peter Harrop of research company IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks. The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based