Skip to main content

New way of ‘harvesting’ energy from shock absorbers ‘could benefit transport industry’

A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning. Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings. The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of
October 31, 2016 Read time: 2 mins
A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning.

Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings.  The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of current progress in the field of vehicle energy harvesting and a detailed account of the theory and the practical development of his device, designed for installation in a heavy good vehicle.

After working on the mathematics, computational analysis and design of his device, Dr Wang constructed his full-size, ready-to-test prototype, which his supervisor Professor Ball says is a realisable application for energy recovery from a typical road vehicle.
 
Harvested energy can be used for any auxiliary purpose in a vehicle, said Professor Ball, and in hybrids it could recharge the electric motor.

The next stage is to work with an industrial partner to install and test Dr Wang’s system in a road-going vehicle.  But the technology has a wide application and there is every possibility that it could be adapted for rail vehicles, especially as Dr Wang has taken up a full-time research post at the University of Huddersfield’s Institute of Railway Research (IRR).

According to Dr Paul Allen, who leads the IRR’s Centre for Innovation in Rail, the IRR is now exploring how energy harvesting and modelling techniques can be applied to developing low-cost self-health monitoring dampers for railway vehicles, a project which already has two industrial partners.

Related Content

  • March 26, 2013
    Creating safer roads with vehicle communication
    Accurate, timely information which eliminates the need to brake quickly when approaching a work zone or other road hazard could prevent crashes and save lives, according to research by the University of Minnesota. Thanks to research by the University of Minnesota, this vision is closer than ever to reality. “In the past fifty years we’ve made great strides in reducing traffic fatalities with technologies that save lives in crashes, like airbags and seat belts,” says M. Imram Hayee, electrical and computer e
  • April 30, 2015
    US budget proposals seek recognise ITS benefits
    President Obama’s latest budget brings some good news for the transportation and ITS sectors. President Obama’s proposed 2016 budget could see more progress on many of America’s ingrained transportation problems than has been achieved in some time and includes a six-year $478 billion surface transportation reauthorisation. That is, of course, provided it clears all of the administrative hurdles to become law.
  • February 3, 2012
    Detection analysis technology successfully predicts traffic flows
    David Crawford investigates new detection analysis technology from IBM. Locations on both the East and West Coasts of the US are scheduled for early deployments of IBM's new Traffic Prediction Tool (TPT) statistical analysis model for the fine-time resolution and near-term prediction of road flow conditions. Developed by IBM's Watson Research Laboratories, TPT is designed to analyse data from the the key detection indicators - average vehicle volumes and speeds passing a location in a given time interval -
  • February 26, 2016
    Traction motors for electric vehicles change radically
    According to Franco Gonzalez, senior technology analyst, IDTechEx, there are about 200 companies making traction motors for electric vehicles, rather like the 200 making the lithium-ion batteries that increasingly power them. However, whereas three types of lithium-ion battery chemistry and construction are taking almost all of the business, with traction motors the situation is much more complex because the diversity of needs calls for many very different types of motor from brushless out-runner motors for