Skip to main content

New way of ‘harvesting’ energy from shock absorbers ‘could benefit transport industry’

A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning. Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings. The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of
October 31, 2016 Read time: 2 mins
A UK university student researcher has made a breakthrough by designing and constructing a new system which ‘harvests’ the energy generated by a vehicle’s shock absorbers and feeds it back into batteries or electrical systems such as air conditioning.

Ruichen Wang from the University of Huddersfield carried out the project to obtain his doctorate at the University and has published his findings.  The article, Modelling, Testing and Analysis of a Regenerative Hydraulic Shock System, provides a summary of current progress in the field of vehicle energy harvesting and a detailed account of the theory and the practical development of his device, designed for installation in a heavy good vehicle.

After working on the mathematics, computational analysis and design of his device, Dr Wang constructed his full-size, ready-to-test prototype, which his supervisor Professor Ball says is a realisable application for energy recovery from a typical road vehicle.
 
Harvested energy can be used for any auxiliary purpose in a vehicle, said Professor Ball, and in hybrids it could recharge the electric motor.

The next stage is to work with an industrial partner to install and test Dr Wang’s system in a road-going vehicle.  But the technology has a wide application and there is every possibility that it could be adapted for rail vehicles, especially as Dr Wang has taken up a full-time research post at the University of Huddersfield’s Institute of Railway Research (IRR).

According to Dr Paul Allen, who leads the IRR’s Centre for Innovation in Rail, the IRR is now exploring how energy harvesting and modelling techniques can be applied to developing low-cost self-health monitoring dampers for railway vehicles, a project which already has two industrial partners.

Related Content

  • May 21, 2012
    SwRI to launch EssEs consortium
    Southwest Research Institute (SwRI) will launch a new cooperative research project focusing on safe, reliable, cost-effective energy storage systems for electric and hybrid-electric vehicle applications. The Energy Storage System Evaluation and Safety (EssEs) consortium is intended to help vehicle manufacturers and battery suppliers develop pre-competitive, detailed cell-level test data on electrochemical storage systems and perform research to advance testing methodologies to evaluate batteries. The four-y
  • December 6, 2023
    Max Lay Lifetime Achievement Award recipient announced
    Dr Paul Higgins receives ITS Australia's highest honour for 'profound impact and influence'
  • January 26, 2012
    Bringing V2I and V2V communications to workzone safety
    Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering talks about efforts to bring V2I and V2V communications into work zones. With USDOT backing and under the auspices of the ITS Joint Program Office Connected Vehicle Research (formerly IntelliDrive) research programme, M. Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering along with team of his students, have been conducting research into the application of
  • December 8, 2016
    Student’s graphene battery could cut EV charging times
    Josh de Wit, a second-year mechanical engineering student from the University of Sussex, has won the Autocar-Courland Next Generation Award for 2016 with a concept that could dramatically reduce charging times for electric vehicles (EVs) and reduce the weight of their batteries. Josh’s design harnesses the remarkable qualities of graphene, a form of pure carbon in sheets that are just one atom thick. A car battery made with stacked graphene, he says, would take far less time to charge, store more energy