Skip to main content

New software could detect when people text and drive

Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.
September 20, 2017 Read time: 2 mins
Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.


Fakhri Karray, an electrical and computer engineering professor and director of the Centre for Pattern Analysis and Machine Intelligence (CPAMI) at Waterloo, said that information could be used to improve road safety by warning or alerting drivers when they are dangerously distracted. As advanced self-driving features are increasingly added to conventional cars, he said, signs of serious driver distraction could be employed to trigger protective measures.

“The car could actually take over driving if there was imminent danger, even for a short while, in order to avoid crashes,” said Karray.

Algorithms at the heart of the technology were trained using machine-learning techniques to recognise actions such as texting, talking on a cellphone or reaching into the backseat to retrieve something. The seriousness of the action is assessed based on duration and other factors.

That work builds on extensive previous research at CPAMI on the recognition of signs, including frequent blinking, that drivers are in danger of falling asleep at the wheel. Head and face positioning are also important cues of distraction.

Ongoing research at the centre now seeks to combine the detection, processing and grading of several different kinds of driver distraction in a single system.

“It has a huge impact on society,” said Karray, citing estimates that distracted drivers are to blame for up to 75 per cent of all traffic accidents worldwide.

Related Content

  • ITS need not reinvent machine vision
    October 29, 2014
    Machine vision techniques hold the potential to solve a multitude of challenges facing the transportation sector Optical Character Recognition (OCR), the base technology for number plate recognition, has been in industrial use for more than three decades. It is a prime example of how, instead of having to start from scratch, the transportation sector can leverage and adapt the machine vision expertise already used in industry in order to provide robust solutions with new capabilities. “The real val
  • Aimsun takes part in driver data study to improve C/AVs
    November 14, 2018
    Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs). The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs. Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how h
  • Cost benefit analysis ‘can’t be carried out with a cookbook’
    June 25, 2018
    There is far more to working out the worth of a project than simply filling in a few headings on a spreadsheet. David Crawford surveys some recent thinking from the US and Canada. Cost benefit analysis (CBA) “can’t be carried out with a cookbook”, warns US analyst Professor Robert J Brent. “ You can’t just get out a spreadsheet and fill in the data for all the headings. Each transport CBA should have something that is distinctive, in terms of location (for example, for a rural area), types of user
  • Need for secure approach to connected vehicle technology
    January 7, 2013
    Accidental or malicious issue of false messages to connected vehicles could result in dire consequences, so secure systems of authentication and certification are likely to be necessary, write Paul Avery and Sandra Dykes. Connectivity among vehicles in urban traffic systems will provide opportunity for beneficial impacts such as congestion reduction and greater safety. However, it also creates security risks with the potential for targeted disruption. Security algorithms, protocols and procedures must take