Skip to main content

New software could detect when people text and drive

Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.
September 20, 2017 Read time: 2 mins
Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.


Fakhri Karray, an electrical and computer engineering professor and director of the Centre for Pattern Analysis and Machine Intelligence (CPAMI) at Waterloo, said that information could be used to improve road safety by warning or alerting drivers when they are dangerously distracted. As advanced self-driving features are increasingly added to conventional cars, he said, signs of serious driver distraction could be employed to trigger protective measures.

“The car could actually take over driving if there was imminent danger, even for a short while, in order to avoid crashes,” said Karray.

Algorithms at the heart of the technology were trained using machine-learning techniques to recognise actions such as texting, talking on a cellphone or reaching into the backseat to retrieve something. The seriousness of the action is assessed based on duration and other factors.

That work builds on extensive previous research at CPAMI on the recognition of signs, including frequent blinking, that drivers are in danger of falling asleep at the wheel. Head and face positioning are also important cues of distraction.

Ongoing research at the centre now seeks to combine the detection, processing and grading of several different kinds of driver distraction in a single system.

“It has a huge impact on society,” said Karray, citing estimates that distracted drivers are to blame for up to 75 per cent of all traffic accidents worldwide.

Related Content

  • Camera technology a flexible and cost-effective option
    June 7, 2012
    Perceptions of machine vision being an expensive solution are being challenged by developments in both core technologies and ancillaries. Here, Jason Barnes and David Crawford look at the latest developments in the sector. A notable aspect of machine vision is the flexibility it offers in terms of how and how much data is passed around a network. With smart cameras, processing capabilities at the front end mean that only that which is valid need be communicated back to a central processor of any descripti
  • Shailen Bhatt: 'We want to save lives with connectivity by accelerating V2X deployment'
    December 11, 2023
    US government money is available for Vehicle to Everything roll-outs. FHWA's Shailen Bhatt talks to Adam Hill about changing the narrative on road safety - and the importance of deploying technology at scale
  • Data revolution in real time travel information
    February 3, 2012
    Damian Black, CEO and founder of SQLstream Inc, writes about relational stream processing for real-time intelligent transport systems Almost unnoticed there is a revolution going on in Internet data which is different from anything seen before. It is taking place in sensor data, which research organisation Gartner predicts in 2012 will exceed 20 per cent of all non-video Internet traffic.
  • Nissan using anthropologist to develop proPILOT autonomous vehicle
    August 17, 2016
    Nissan is using an array of technical talent to develop its next generation autonomous vehicle, including automobile and software engineers, experts on sensor technology and artificial intelligence, computer scientists, production specialists an anthropologist. Melissa Cefkin, principal scientist and design anthropologist at the Nissan Research Center in Silicon Valley is playing a key role in the project, analysing human driving interactions to ensure that it is prepared to be a ‘good citizen’ on the ro