Skip to main content

New software could detect when people text and drive

Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.
September 20, 2017 Read time: 2 mins
Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.


Fakhri Karray, an electrical and computer engineering professor and director of the Centre for Pattern Analysis and Machine Intelligence (CPAMI) at Waterloo, said that information could be used to improve road safety by warning or alerting drivers when they are dangerously distracted. As advanced self-driving features are increasingly added to conventional cars, he said, signs of serious driver distraction could be employed to trigger protective measures.

“The car could actually take over driving if there was imminent danger, even for a short while, in order to avoid crashes,” said Karray.

Algorithms at the heart of the technology were trained using machine-learning techniques to recognise actions such as texting, talking on a cellphone or reaching into the backseat to retrieve something. The seriousness of the action is assessed based on duration and other factors.

That work builds on extensive previous research at CPAMI on the recognition of signs, including frequent blinking, that drivers are in danger of falling asleep at the wheel. Head and face positioning are also important cues of distraction.

Ongoing research at the centre now seeks to combine the detection, processing and grading of several different kinds of driver distraction in a single system.

“It has a huge impact on society,” said Karray, citing estimates that distracted drivers are to blame for up to 75 per cent of all traffic accidents worldwide.

Related Content

  • Multimodal simulation helps to improve the airport experience
    December 15, 2022
    The vision of the IMHOTEP project is a multimodal European transport system, where different modes of travel are seamlessly integrated to give passengers a great door-to-gate and gate-to-door experience. Marcel Sala, scientific researcher at Aimsun, explains how this works at airports
  • ZF and NVIDIA announce AI system for autonomous driving
    January 5, 2017
    German auto supplier ZF is working with NVIDIA to develop artificial intelligence (AI) systems for the transportation industry, including automated and autonomous driving systems for passenger cars, commercial trucks, and industrial applications. Unveiled at CES 2017 in Las Vegas, the ZF ProAI for highway automated driving is ZF’s first system developed using NVIDIA AI technology. It aims to enable vehicles to better understand their environment by using deep learning to process sensor and camera data. I
  • On-board cameras capture bus crash
    March 9, 2015
    Authorities have released video showing crashes that happened after police say a 65-year-old bus driver fell asleep at the wheel and hit several vehicles in suburban Detroit. Multiple cameras on board the bus captured what happened: the bus appears to be proceeding normally, as the driver drifts off for just a moment and doesn’t notice the line of cars in front of him until it’s too late. He brakes and attempts to swerve, but hits the back of the car in front. The out-of-control bus continues on its way, h
  • ITS Australia confirms 40 finalists 
    October 16, 2020
    This year has seen largest number of submissions to organisation's National Awards